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iii Abstract 
 
This research identifies realistic timelines for human survivability during accidental 

dwelling fires (ADF).  It also establishes a time window within which the fire service is 

likely to affect a rescue of the occupants from ADFs.  Through a comparison of these two 

timelines, the likelihood that the fire service will rescue an occupant before they receive a 

fatal dose of heat and/or smoke (asphyxiant gases) is established.  The dependence of fire 

service intervention times is also assessed in the context of increasing intervention times 

resulting from cuts to fire authority budgets. 

 

The results show that an increase in the time taken to affect a rescue will lead to an increase 

in the number of fatalities and the severity of injuries which occur when the occupants of 

a dwelling become trapped by (or are otherwise unable to escape from) fire within the 

property. 

 

Around 80% of all fire deaths and injuries in Great Britain occur in dwellings.  This study 

analyses national and local fire statistics to identify the typical fire situations and common 

circumstances which lead to fire deaths and injuries.  This statistical analysis has been used 

to inform the carrying out of thirteen large-scale fire experiments.  Asphyxiant gas 

concentrations and compartment temperatures were gathered during these experiments, in 

order to establish human survival times resulting from the adverse effects of exposure to 

these.  Statistics have also been analysed and a methodology developed to establish fire 

service intervention times. 

 

Establishing survival times on the basis of an analysis of national statistics constitutes new 

work within the field of community fire safety.  In addition, the author is in a preferential 

position to establish realistic times for fire service interventions, and there is no evidence 

that these timelines have previously been developed to this extent or compared to timelines 

for occupant survival.  The findings of this research should be considered by fire authorities 

as they make important decisions for the development of local fire service resourcing 

activities in continuing times of austerity. 
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Introduction 
 

The author of this thesis (Richard Walker) is employed by WMFS as a Fire Engineer within 

the Fire Safety Team.  Richard has a technical background in his current position, based on 

the knowledge he gained as a serving firefighter for 8 years and his further academic and 

vocational learning as a fire safety professional.  In his previous employment within the 

chemical industry, Richard gained an understanding of polymer chemistry both 

academically and through practical application. 

 

Richard discussed his interest in developing his understanding of the human toxicological 

effects during domestic fire situations with the Integrated Risk Management Program 

(IRMP) manager at WMFS.  Following this conversation Richard proposed a program of 

work to further organisational knowledge and develop an evidence based approach to future 

decision making.  He chose to complete this project within the framework of a PhD research 

programme and received joint support from the Chief Fire Officer and the IRMP manager 

to do so. 

 

The main aim of this research is to establish the effectiveness of attending fire crews to 

undertake their duties to help the occupants of a building during a dwelling fire.  This will 

be achieved through the comparison of two timelines.  The first timeline will consider 

human exposure to the effects of heat and smoke in domestic fires and create survival times 

in these situations.  The second timeline will look to establish the time it takes for a fire 

crew to be mobilised to this type of incident and to have a positive impact on trapped 

occupants. 
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The knowledge gained from this research will provide evidence in support of future fire 

authority decision making in times of austerity, where the grant provided to WMFS from 

central government is being reduced (currently in the order of 25-30%).  This project will 

focus on the intervention activities carried out by WMFS and will also consider what can 

be done to prevent fires from starting and to protect people when they do start. 

 

This thesis will identify and review previous publications in this field and will seek to build 

on these from the perspective of attending firefighting crews.  It will also summarise the 

academically accepted methodologies which will be used to gather and process any 

evidence gained.  A series of experiments will be conducted, with aspects of these 

experiments being informed by an in-depth statistical analysis which considers data taken 

from within WMFS and also from data gathered by Department of Communities and Local 

Government (DCLG) from all national Fire and Rescue Services (F&RSs). 

 

The data gathered during the experimental phase will be used to develop timelines for 

human survivability in typical domestic fires.  This data will then be compared with 

timelines for F&RS interventions to these fires.  This comparison will provide information 

as to how effective an operational firefighting crew are at rescuing trapped persons and 

preventing them from becoming fatally exposed to heat and/or asphyxiant gases. 

 

This study supports the findings of other experimental attempts to establish fire survival 

timelines in domestic fire situations.  It also furthers the understanding in this field by 

developing fire scenarios which are informed by national statistical analyses and through 

the comparisons between survival and rescue timelines to assess F&RS effectiveness. 
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0.1 The Challenge for the Fire Service 
 

Over a 4 year period since the spending review in 2010, government funding for each of 

the 46 F&RSs in England has reduced by between 26-39% [1].  Whilst reductions have 

been seen by all F&RSs, the metropolitan brigades have seen larger percentage decreases 

than those serving more rural areas.  Of the 6 metropolitan F&RSs, the average funding 

reduction over this period was 34% and as a result, the number of whole-time firefighters 

has reduced by 13.5% with retained firefighters reducing by 18.9% nationally [1]. 

 

Many F&RSs have adopted new duty systems and resourcing options to minimise the 

impact that funding reductions has had on their ability to respond to emergency incidents.  

However, in large cities the closure of fire stations and the reduction in numbers of 

firefighters has been much publicised.  In 2014, London Fire Brigade reduced its number 

of fire stations and fire engines, each by approximately 10% [2].  Reductions in the numbers 

of fire crews, fire engines and fire stations has the potential to increase the average response 

time to an emergency incident [3].  A report issued by the Department for Communities 

and Local Government showed that average response times to dwelling fires have increased 

from 6.2 minutes in 2004/05 to 7.7 minutes in 2015/16 [4], see Figure 1. 

 

This represents an average increase of 90 seconds to the incidents where the vast majority 

of fire injuries and fire fatalities occur.  However, it should be recognised that an increase 

of approximately 30 seconds is attributable to an automated method of recording this data 

introduced in 2009, which represents an actual increase of about 1 minute over this period.  

With further reductions in funding expected between 2015 and 2019, further increases in 

response times are anticipated.  
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Figure 1 – Average response times by type of fire in England [4] 
 

0.2 Economic Cost of Fire 
 
A national report published in 2011 showed that, in 2008 the economic cost of fires in 

England alone were £8.3bn and that these were broken down into 3 cost areas [5]. 

 
 Anticipation - £3.2bn (cost of fire protection, fire safety training and insurance premiums) 

 Consequence - £3.3bn (cost of fatalities and injuries, loss of business and property damage) 

 Response - £1.8bn (cost of F&RS resource and capital) 

 

Of the £3.3bn cost as a consequence of fire, £1.4bn of this was directly attributable to the 

cost of fire deaths and injuries.  Whilst F&RSs have a responsibility to protect the members 

of their communities, any activities to reduce the number of fire deaths and injuries also 

work in support of the local economy by driving down these costs. 
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0.3 Preventing Fire Deaths and Injuries 
 

All F&RSs undertake prevention, protection and intervention activities and these are 

discussed further in Chapter 5.  F&RSs conduct these activities because it is recognised 

that fire deaths and injuries can be prevented as a result of fire service interventions.  Better 

still, fire prevention and fire protection activities will also prevent casualties. 

 

Whilst fire service attendance times have steadily increased since 2004/05, the number of 

fire deaths and injuries has decreased over the same period.  Fire deaths have reduced by 

33% and fire injuries by 29% [6].  It is therefore reasonable to suggest that the significant 

increase in prevention and protection initiatives undertaken by most if not all F&RSs, over 

this time period, has been the main factor for these decreases. 

 

In addition to those fire deaths and injuries which are preventable by fire service 

intervention, it is also recognised that some fire deaths are unpreventable by this method.  

Unfortunately there are some members of our communities whose lifestyle is such that it 

places them at significant risk from fire.  The reality is that, even if these members of our 

communities lived next door to a fire station, they are unlikely to survive a fire in their 

homes. 

 

It is not uncommon that these vulnerable persons are some of the most difficult to influence 

via prevention and protection activities and the only option is for F&RSs to interact with 

other agencies to identify and help these individuals.  This has been one of the biggest 

challenges to F&RSs in recent times. 
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0.4 Objectives of this Research 
 

The main objective of this study is to establish the likely impact of an increase in fire service 

attendance times above current standards and uses data from within the West Midlands to 

establish these standards.  This study will be completed in the context of reductions in 

funding from central government and also the economic cost of fire. 

 

The study aims to identify the amount of time that people are likely to survive exposure to 

domestic fire situations, and to compare the point at which fatalities and injuries occur with 

a reasonable time for a fire service attendance.  On the basis of this comparison it should 

be possible to determine if current intervention times can positively influence the outcome 

of such an incident. 

 

If it is such that fire deaths and injuries occur well before or well after existing fire service 

attendance timeframes, then it could be concluded that the time taken to attend an incident 

bares little influence over the outcome. 

 

If, however, it is demonstrated that deaths and injuries in domestic fires occur at around the 

same time that a fire service attendance is achieved, then it could be concluded that any 

future increases in attendance times are likely to cause an increase in the numbers of fire 

deaths and injuries, with everything else being equal. 
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0.5 Research Methodology 
 

In order to compare the duration that people can survive a domestic fire with the time of a 

reasonable fire service attendance, it will be necessary to develop a detailed understanding 

of these two timelines. 

 

The timeline for survivability will be established by gathering data from a series of large-

scale fire experiments conducted within a disused house.  In order to gain the best 

information from these experiments it is important to understand the types of domestic fires 

which are most likely to cause death or injury to its occupants. 

 

A detailed analysis of statistical data will be undertaken to gain a thorough understanding 

of those factors, within a domestic fire, which can contribute towards excessive human 

exposure to heat and smoke.  This detailed analysis will cover three main data sources.  It 

will include national fire incident data that is publicly available from government websites. 

 

It will also include a more detailed analysis to understand the combinations of factors which 

contribute towards the impact on people and this will involve the processing of data that is 

not publicly available.  This data will be requested from the DCLG by the author and will 

be provided as raw data.  It will be processed by the author to gain this more detailed 

understanding.  In addition, the author will also have access to raw data from West 

Midlands Fire Service and this will also be used for the same purposes. 
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Once the factors which contribute towards fire deaths and injuries are established by this 

statistical analysis, they will be used to inform the large-scale experiments.  They will 

influence the internal layout of the premises, the location of the fire and the types of fuel.  

They will influence the location of the data gathering points and anticipate the actions of 

occupants on becoming aware of a fire.  They will help to establish the benefit of early 

warning from a domestic fire alarm and the other measures that might help to protect people 

involved in these incidents. 

 

A series of full-scale fire tests will then be conducted within a disused domestic property.  

The property will be fitted with various pieces of instrumentation to establish the quantities 

of heat and the main asphyxiant gases within the fire compartment and elsewhere within 

the property.  This data will be gathered and processed to establish the timeframes after 

which the occupants of these rooms are likely to receive a fatal exposure or become injured. 

 

Alongside these experiments, data will also be gathered to accurately determine the average 

fire service attendance time to this type of incident and to consider the window in which 

the fire service are likely to have a positive impact at a domestic fire. 

 

Finally, the occupant impact timeline and the fire service intervention timeline will be 

compared.  If it can be demonstrated that the occupants of a domestic building, which is on 

fire, are still alive at the time where the fire service can have a positive impact, then it will 

be concluded that an increase in fire service attendance times, against current standards, 

will increase the number of fire deaths and injuries in the UK.  This is on the basis that 

exposure is time dependant. 
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Chapter 1 - Literature Review 
 
This section aims to give a thorough introduction to all of the recent literature relating to 

the main areas of this study and to critically review these in its context.  This will include 

an introduction to pyrolysis and combustion and a review of fire toxicity.  It sets out a 

standard approach to assessing fractional effective doses, tenability and toxicological 

analysis and describes the hazard presented to people from heat and asphyxiant gases. 

 

It further discusses the need to consider data from fire statistics and reviews a number of 

other large-scale tests which are similar to those planned within this study. 

 

1.1 Pyrolysis, Combustion, Fire and Smoke 
 
Whilst natural fires have occurred on Earth for millions of years, there is evidence to 

suggest that widespread human use of fire started much more recently, some 50 to 100 

thousand years ago [7].  Early humans used fire for cooking, for heating to enable people 

to live in cooler climates, for protection against attack from wild animals and later for the 

production of metals etc. 

 

Almost all carbon based polymeric materials, both naturally occurring (e.g. wood) and 

synthetic materials (e.g. plastics) can undergo pyrolysis and/or combustion.  Pyrolysis is 

the process of simultaneous phase and chemical species change caused by heat.  

Combustion is a chemical process of oxidation that occurs at a rate fast enough to produce 

temperature rise and usually light. 
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A fire in its most simple terms is the chemical reaction between a fuel and oxygen, 

producing both heat and light energy.  As with all irreversible chemical reactions, the 

reactants (fuel and oxygen) undergo a permanent chemical transformation to yield the 

products, typical examples of which include carbon dioxide, water and carbon monoxide.  

The exact types and ratios of products given by these combustion reactions are dependent 

on the chemical structure of the fuel and the conditions under which the combustion 

reaction occurs. 

 

In addition to the combustion process, pyrolysis also occurs where heat is applied to 

combustible materials.  The chemical species produced can then either contribute to further 

combustion or can be released in the gas phase and remain non-combusted.  As a result of 

both pyrolysis and combustion a significant portion of the fuel is converted into an array 

of chemical species which have a relatively low molecular weight. 

 

These chemical species appear in the gas phase and also as airborne solid and liquid 

particles.  They are buoyant and can be transported within the smoke plume to locations 

remote from the fire.  A non-volatile solid-phase frequently remains, consisting of 

carbonaceous char and inorganic residue. 

 

In the context of fires within buildings, these chemical reactions can be extremely complex 

due to both the complexity of the fuels and the chemistry of these combustion reactions.  

For example, an armchair could consist of three different types of fuel, i.e. a wooden frame 

with flexible polyurethane foam for padding and a fabric covering such as cotton.  As each 

fuel component pyrolyses it will break down to yield a large number of chemical species 

[8][9].  
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This cocktail of chemical species will be carried within the smoke plume as solid, liquid 

and gas phase particles.  A significant number of the chemicals produced during 

combustion can have an adverse effect upon people exposed to this smoke.  As it is accepted 

that fire smoke is very complex, only a relatively small number of chemical species, which 

have a significant effect, are generally considered when assessing the toxicity of fire smoke. 

 

1.2 Fire Toxicity 
 
Almost all polymeric fuels contain atoms of carbon and hydrogen and as a result, they are 

often referred to as hydrocarbon fuels.  Many hydrocarbon fuels also contain atoms of 

oxygen and nitrogen, amongst many others.  As a result, the smoke produced during the 

pyrolysis and combustion processes contains compounds, produced during chemical 

reaction, which contain these elements. 

 

When people are exposed to fire and smoke they can be adversely affected in one or all of 

the following three ways and any exposure to heat or smoke can prevent people from safely 

evacuating from within an affected building [10]. 

 
 Heat – exposure to excessive heat can cause burns, where human cells can be irreversibly 

damaged 

 Sensory irritation – where smoke enters the ocular or respiratory tracts, certain chemical 

species will cause discomfort and pain 

 Asphyxiation and hypoxia – exposure to smoke can reduce the natural ability of a human 

body to breath in and distribute necessary oxygen to all of its organs and cells 

 

This study considers human exposure to heat and focuses on the irritant and asphyxiant 

effects of exposure to smoke.  The rationale for this is detailed in Section 1.5.1. 
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1.2.1 The Human Respiratory System 
 
The human respiratory system consists of the oral and nasal cavities which act as openings, 

allowing air to be transferred into and out of the human body.  The pharynx, larynx and the 

trachea collectively make up a pipe which allows and regulates air flow into and out of the 

lungs.  The lungs consist of an array of pipework known as the bronchial tree which enables 

air to be passed into the alveoli.   These small grape like sacks are where gas exchange 

occurs with oxygen being supplied into the blood and the human waste product of carbon 

dioxide being removed from it.  The diaphragm is a large muscle used to create the 

necessary pressure difference within the lungs that is required for air to be inhaled and 

exhaled [11]. 

 

1.2.2 The Human Circulatory System 
 
The human circulatory system consists of the heart which acts as a pump for circulating 

blood to all cells throughout the human body.  The arteries and veins act as a network via 

which oxygenated blood is circulated to all cells and deoxygenated blood returns to the 

heart.  Capillaries are very small blood vessels where gases, nutrients and waste are 

exchanged with the surrounding cells.  Blood is the liquid medium used to transport gases, 

nutrients and waste material around the body.  Gases are primarily transported via their 

chemical attachment to haemoglobin [12]. 
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1.3 Asphyxiant Effects of Fire Gases 
 
It has been identified that there are four main fire gases [13][14] (used within the 

asphyxiant-gas model [15]) each of which has the potential to impact upon the occupants 

of a building who may be exposed to these gases during a fire.  It is of significance that a 

building’s structure acts to contain the products of combustion and it is typical for a 

significant proportion of these harmful fire gases to remain within the building and to 

increase the extent to which its occupants are exposed.  The four gases considered are 

carbon monoxide (CO), hydrogen cyanide (HCN), carbon dioxide (CO2) and oxygen (O2). 

 

The potential for human exposure to these four gases will be determined during the large-

scale fire experiments and an assessment of their impact will be made.  This analysis will 

be completed using the fractional effective dose (FED) methodology, as outlined by David 

Purser and further discussed and developed in a number of studies [16][17][18]. 

 

1.3.1 Carbon Monoxide 
 
The stoichiometric combustion reaction of methane with oxygen is given below with the 

fuel and oxygen being consumed and carbon dioxide and water being produced. 

ସܪܥ  2ܱଶ ⟶ ଶܱܥ   ଶܱܪ2

 
CO is a gas that is produced in all hydrocarbon combustion reactions.  It is more readily 

produced in vitiated environments where the availability of O2, at the location where 

chemical reaction occurs, is limited as seen below. 

ସܪܥ  1.5ܱଶ ⟶ ܱܥ   ଶܱܪ2
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In Purser’s review of the asphyxiant components of fire effluents, he states that there is 

little doubt that carbon monoxide is the most important asphyxiant agent formed in fires, 

being one of the main causes of the incapacitation of victims at a fire scene and probably 

the main ultimate cause of death for fire victims [19]. 

 

CO has a toxic effect on humans as a result of its affinity for the ‘oxygen sites’ on 

haemoglobin within the blood.  The stability of the CO and haemoglobin complex is 

approximately 250 times greater than that with O2 and therefore CO occupies the sites 

needed for O2 transportation.  Additionally, partial conversion of haemoglobin to 

carboxyhaemoglobin (COHb) causes the O2 that is bonded as oxyhaemoglobin (O2Hb) to 

be more tightly held and it is therefore less available to the body tissues [20]. 

 

Thus an individual exposed to CO, loses the ability to efficiently transport O2 from the 

lungs to the cells.  This action is known as anaemic hypoxia, with hypoxia being an 

inadequate supply of oxygen to the cell tissues.  Anaemic hypoxia specifically refers to 

hypoxia caused by a reduction in the oxygen carrying capacity of the blood, where both the 

respiratory and circulatory systems are otherwise functioning as normal. 

 

When the ratio of COHb to O2Hb approaches 50:50 in the blood, during a fire, this is 

usually lethal [19].  COHb is stable both in cadavers and also in stored blood samples and 

can be used, by either a doctor or a pathologist, to give a good indication of the extent to 

which a victim has been exposed to this asphyxiant gas.  In these terms, the ratio of COHb 

to O2Hb is given as a percentage COHb.  So a measurement of 30% COHb would mean 

that the haemoglobin in the body was 30% saturated with CO with the remaining 70% 

being saturated with O2.  
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1.3.2 Hydrogen Cyanide 
 
Hydrogen cyanide is also produced in combustion reactions although only from fuels which 

contain nitrogen.  In domestic fires, nitrogen containing fuels typically include upholstered 

furniture, bedding materials and some clothing.  These contain polymers such as 

polyurethanes, polyamides and polyacrylonitrile as well as natural materials such as wool.  

HCN has a lethal dose some 25 times smaller than that of CO [20] and where the toxic 

effects of CO are often slow, HCN intoxication tends to be quite rapid [19]. 

 

Increased HCN levels have also been recorded within the blood of fire victims although 

HCN is not always considered as a significant contributor towards fire fatalities [19].  CO 

is widely perceived as the most prevalent and dangerous of the combustion products with 

HCN frequently being overlooked [21].  This is likely to be because HCN has a half-life of 

only 1 hour within the bloodstream and blood samples are rarely taken within the short 

time frame required to obtain peak measures of concentration [22].  As a result, the HCN 

level observed in the blood of fire victims, is often erroneously low. 

 

In support of this argument, it is known that all fires which produce HCN also produce CO 

with an equivalence between the yields of both [23].  So you would expect to see high 

concentrations of HCN in the blood of victims where there is also a high concentration of 

CO, when nitrogenous fuels form part of the combustion reaction. 

 

CO and HCN are both asphyxiant gases.  CO suppresses the ability of the human body to 

transfer O2 to the living cells, whereas the adverse action of HCN is somewhat different.  

HCN inhibits the enzyme, cytochrome oxidase, responsible for utilising O2 within the cells. 
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This acts to suppress the central nervous system by attacking the mitochondrial cytochrome 

in the tissues of vital organs, predominantly within the brain and the heart to have a toxic 

effect and prevent O2 transfer [17]. 

 

1.3.3 Carbon Dioxide 
 
Carbon dioxide is also produced in the combustion process, more prevalently in the earlier 

stages of the fire where oxygen levels remain high.  CO2 is not recognised as a significant 

human asphyxiant and does not contribute significantly to toxicity when compared to CO 

and HCN.  However, CO2 does significantly increase the rate and the depth of breathing in 

humans [20]. 

 

The normal at rest breathing rate of an adult is 12 breaths per minute (min) with the tidal 

volume of a single breathe typically being in the order of 500 ml.  An adult will therefore 

typically inhale and exhale 6 litres of air every min and this is known as the Respiratory 

Minute Volume (RMV). 

 

A 2% concentration of CO2 in air will typically increase the RMV by 50% to 9 litres/min 

whereas 10% concentrations of CO2 will increase the RMV by as much as 8-10 times or 

48-60 litres/min.  As a result of these increased respiratory volumes, the total amount of 

CO and HCN inhaled is increased at a proportionate level [20]. 
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1.3.4 Oxygen Depletion 
 
The concentrations of CO, HCN and CO2, within a building increase during a fire, whereas 

the concentration of O2 decreases as a result of it being consumed during the combustion 

process and displaced as the other gases are produced.  It is important therefore to recognise 

that O2 depletion in a fire can lead to ‘low oxygen hypoxia’ which can result in motor skill 

impairment, increased fatigue, loss of consciousness and eventually death [19].  It is 

generally accepted that the levels of asphyxiant gases will be lethal before O2 depletion 

becomes toxicologically significant [24]. 

 

1.3.5 Considering the Combined Effects of Fire Gases 
 
The impact on respiration rates at high CO2 levels has already been discussed however, the 

question is often posed, ‘Are the combined effects of exposure to the asphyxiant gases 

additive, synergistic or antagonistic?’  In order for the effects to be additive, it would be 

reasonable to expect that if a person had a half of an incapacitating dose of CO and a half 

of an incapacitating dose of HCN then the combined effects would lead to incapacitation.  

A synergistic effect is where the combination produces an effect greater than the sum of 

the individual effects and an antagonistic effect is where the combination has an overall 

effect which is less than the sum of the individual effects. 

 

The bar chart given in Figure 2 shows the COHb levels found in people who sustained fatal 

CO poisoning through either fire or non-fire exposures according to Nelson [25].  Non-fire 

fatalities typically occur through accidental exposure to faulty heating equipment or 

through deliberate exposure to the fumes from a vehicle exhaust. 
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The chart shows that, for both fire and non-fire fatalities the highest portion of the 

population had a percentage COHb in the region of 70-80% at the point where they stopped 

breathing. 

 

 
Figure 2 – COHb levels in fire and non-fire deaths [25] 
 

However, there is a subtle difference in the shape of the two curves, in that the majority of 

non-fire fatalities seem to occur in the region between 60-90% COHb, whereas the majority 

of fire fatalities occur in the region 40-80% COHb.  Clearly the levels of CO found within 

these people contributed towards their death, but if we consider the typical fuel types for 

both categories this may help to explain why fire fatalities generally occur with a lower 

percentage COHb. 
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Where exposure to fumes from faulty heaters or vehicles leads to a fatality the fuel is 

generally clean i.e. natural gas, petrol or paraffin and therefore the range of products of 

combustion can be relatively simple.  However, where the fatality occurs as a result of 

exposure to fire gases, the chemistry can be much more complex, as discussed. 

 

HCN is typically found in domestic fire gases but would not necessarily be expected in 

non-nitrogenous fuels such as natural gas, petrol or paraffin.  It is therefore likely that the 

inhalation of these other chemical components, alongside the CO, also contributed towards 

death and a combined effect is observed.  Exposure to CO will be a significant factor in 

determining the survivability of exposure to fire gases but it should also be recognised that 

other species such as HCN will also contribute significantly. 

 

Both CO and HCN are produced more prevalently as a result of developed flaming 

combustion [26][27].  These lead to hypoxia in those people exposed to these asphyxiant 

gases and as such it is assumed that the effects of a combination of these gases are additive.  

A number of studies have been conducted and the outcome of these suggests that exposure 

to a combination of these gases does not have a significant synergistic effect and that there 

is general agreement that their combined effects may be treated as additive [28][29][30]. 
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1.3.6 Human Susceptibility and Variations 
 
Figure 2 also shows that there is quite a significant COHb range resulting in fatality.  Both 

in fire and non-fire situations, some people died as a result of having <30% COHb whereas 

others were observed to have more than 90% COHb.  With this being the case for non-fire 

situations, where the fuels and burning processes are generally cleaner, it shows that there 

is a significant variation in human susceptibility to CO exposure. 

 

In practice, few people survive exposure to more than 50% COHb [19], although it is 

recognised that a number of subgroups are often more susceptible to its exposure.  The 

factors which can make a person more susceptible include alcohol and drugs, age and 

certain health conditions [19].  There are strong statistical links between fire victims and 

alcohol or drug use, where both prescription and recreational drugs are included. 

 

An individual’s age will also be an important factor, with the very young (ignition likely 

to be as a result of fire-play [31]) and the elderly (ignition likely to as a result of smoking 

materials [32]) being the most susceptible subgroups, with a significantly reduced tolerance 

to asphyxiant gases [33][34].  Particular health conditions can also increase an individual’s 

susceptibility, with asthma sufferers and people with lung conditions such as chronic 

bronchitis also having a significantly reduced tolerance [19]. 

 

1.4 Human Tolerances to Fire Gases 
 
 The effects of the significant asphyxiant gases are discussed earlier in Section 1.3 of this 

thesis.  This section continues to summarise the typical concentrations of each of the four 

gases at which an effect would be likely. 
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1.4.1 Carbon Monoxide 
 
Inhalation of CO can cause confusion and loss of consciousness and it is the major ultimate 

cause of human death in fires in Great Britain (GB) [19].  Animal tests conducted by Kaplan 

demonstrated that exposure to around 7,000ppm (0.7%) of CO for a 5 min period was likely 

to have an incapacitating effect [35].  Figure 3 shows the typical times to incapacitation for 

a number of concentrations of CO [36]. 

 
Figure 3 – Time to incapacitation for active monkeys exposed to CO [36] 
 

In general the time-concentration curve may be described as a dose dependency curve (e.g. 

8,000 × 4 ≈ 1,000 × 30 ≈ 2,700 × 10). 
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1.4.2 Hydrogen Cyanide 
 
It is observed that the effect of HCN differs from CO with the transition from 

hyperventilation to incapacitation occurring much more rapidly, whereas hyperventilation 

occurs for an extended period, prior to the onset of incapacitation, with CO.  Animal tests 

show the following effect as given in Table 1 [37]: - 

 
HCN Concentration Toxic Effect 

<80 ppm Minor effects with 60 min exposure, mild background 
hyperventilation 

80-180 ppm Episode of hyperventilation with subsequent incapacitation 
within 30min 

>180 ppm Hyperventilation occurs immediately with incapacitation 
occurring within a few minutes 

>300 ppm Death occurs rapidly 

Table 1 – Toxicological effects of HCN on animals [38] 
 

Studies have been conducted and information gathered by Purser [38], to consider the effect 

of exposure to HCN at different concentrations.  A graphical representation of the dose 

relationship is given in Figure 4 [36].  This representation confirms that exposure in excess 

of 180 ppm leads to rapid incapacitation.  This is equivalent to a level of only 0.02% 

showing that HCN, which is less prevalent, is 35 times more effective at incapacitating 

than CO. 
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Figure 4 – Time to incapacitation for seated monkeys exposed to HCN [36] 
 

1.4.3 Carbon Dioxide 
 
CO2 can cause a loss of consciousness at very high concentrations, whilst at lower 

concentrations it causes a marked increase in the respiratory rate.  Table 2 introduces the 

effects that different concentrations of CO2 will have on the respiratory rate [38]. 
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CO2 Concentration Respiratory Effect 

3-5% Between these concentrations there is an increased degree of 
respiratory distress with increasing rapid breathing 

5-6% Severely rapid breathing occurs causing huge discomfort and 
symptoms such as headaches and nausea 

7-10% Severe rapid breathing and symptoms such as dizziness, 
drowsiness and unconsciousness 

10% At 10% CO2 a loss of consciousness is expected within 2 min

Table 2 – Respiratory effects of CO2 on animals [38] 
 

1.4.4 Oxygen Depletion 
 
The concentration of O2 in normal, breathable air is ≈ 21% by volume.  As a victim is 

exposed to reduced O2 concentrations, they become susceptible to the effects of hypoxia.  

Purser has studied these effects and Table 3 is reproduced from these works [38]. 

 
O2 Concentration Hypoxic Effect 

20.9-14.4% Indifferent phase – only minor effects observed on visual and 
exercise capability 

14.4-11.8% Compensated phase – slight increase in breathing and heart 
rates with a reduced ability to perform complex motor skills 

11.8-9.6% Manifest hypoxia – marked increase in breathing and heart 
rates with loss of critical judgement and muscular control 

9.6-7.8% Critical hypoxia – loss of judgement and comprehension, 
leading to unconsciousness and eventually death 

Table 3 – Hypoxic effects of reduced O2 concentrations [38] 
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Typically a fire in an enclosure may have a CO2 concentration of approximately 5%, CO 

concentration of 0.25-0.5% and an O2 concentration approaching 13.5% [39].  CO2 would 

trigger hyperventilation at 5% and at 5,000 ppm CO would cause rapid incapacitation.  

Therefore from a fire effluent toxicity perspective O2 depletion has not been studied in 

detail.  However, for high altitudes (mountaineering and aviation) O2 depletion is a serious 

threat. 

 

Incapacitation times in reduced O2 environments at altitude is given in Figure 5 [38]. 

 

 
Figure 5 – Time to incapacitation for humans exposed to reduced O2 levels [38] 
 

1.4.5 Irritant Gases 
 
There are 20 or so identified irritant gases and it is likely that others exist [14]. The ‘Irritant’ 

gases include substances such as [40][41]: - 

 Hydrogen Halides (HF, HCl, HBr,) 

 Acrolein an unsaturated aldehyde (C3H4O) 

 Nitrogen Dioxide (NO2) 

 Sulphur Dioxide (SO2) 

 Other organo-irritants 
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These materials cause irritation to the sensory organs and the upper respiratory tract [40].  

They inhibit a person’s ability to make their escape, through a range of symptoms including 

tears, blinking, and severe pain to the eyes, nose and throat, breath-holding and coughing.  

These gases will not be considered within this analysis as discussed in Section 1.5.1. 

 

In contrast to the asphyxiant gases, the irritant gases are considered to be concentration and 

not dose dependent [42].  In many cases the irritant gases are considered as secondary, 

however exposure to these gases can have both behavioural and physiological effects which 

will impair an individual’s ability to escape and, as a result, cause additional exposure to 

the toxic gases [43]. 
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1.5 Tenability and Fractional Effective Dose 
 
This section considers the mechanisms by which people are affected when in enclosed 

spaces during a fire.  It outlines the different hazards which prevent safe escape and focuses 

on the major threats to the occupants of a dwelling when a domestic fire occurs. 

 

1.5.1 Tenability 
 
In buildings which can be occupied by members of the public, tenability is typically 

considered in the terms of zero exposure to heat and smoke.  In public buildings where zero 

exposure cannot always be avoided, then the design of the building is such that visibility 

through smoke is maximised, and exposure to convective and radiative heat is minimised.  

It is widely expected that building design dictates that the adverse effects of a fire on the 

health and safety of the occupants of public buildings are kept to an absolute minimum. 

 

In domestic properties the old adage still applies ‘An Englishman’s house is his Castle!’  

Fire safety legislative requirements placed upon domestic buildings are considerably more 

relaxed and far less regulated compared with public buildings.  The big difference from a 

human perspective is that the internal layout of a domestic residence is much more familiar.  

However it is important that there is a recognised methodology for establishing the point 

when conditions become such that escape is no longer possible and where incapacitation 

becomes likely [44] and then using this to determine any health effects from exposure [45]. 

 

Where fires occur, tenability impairment is considered to arise through a number of 

mechanisms.  These mechanisms are considered within ISO 13571 [15] and the British 

Standard Published Document PD 7974-6:2004 [42], and they include the following: - 
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1 Sensory Irritancy – escape can be impaired by the effects of irritant chemical gases in the 

smoke.  They can act upon the eyes and the respiratory tract to cause pain and debilitation. 

2 Smoke Obscuration – where the particles contained within the smoke layer obscure human 

vision to the point where they are unable to navigate their way to an exit. 

3 Exposure to Harmful Smoke – extended exposure to the asphyxiant gases contained in 

smoke will lead to confusion, rapidly followed by incapacitation, loss of consciousness and 

then death. 

4 Exposure to Fire and Heat – clearly this can cause severe pain to any unprotected parts of 

the human body.  It can affect external skin cells, where they are exposed to flames or a 

heat source through radiative heat transfer and also through skin cells which come into 

contact with flames or become immersed within a hot smoke layer.  Internal skin cells can 

also be affected through inhalation of hot smoke, particularly in situations where the smoke 

has a high humidity. 

 

The human impact of each of these hazard mechanisms can be calculated using a Fractional 

Effective Dose (FED) approach.  This approach is discussed further in Section 1.5.2 but 

put simply, it calculates the amount of harm caused (dose received) within a given time 

step and then adds these individual doses together until a threshold is reached, at which 

point an adverse effect is expected to occur.  Whilst this approach is not definitive for any 

given individual, it can identify a time when a person has been exposed to a quantity of 

heat, smoke or toxic chemical species such that they will have been impacted.  The impact 

is likely to render that person unable to act to help themselves, and they therefore become 

more vulnerable to further exposure. 

 

By way of an example, if someone is placed in a room where the concentration of carbon 

monoxide is such that thy inhale 20% of an incapacitating dose over the course of a minute, 

then they are likely to become incapacitated after a period of 5 minutes, by which time a 

full dose will be achieved.  
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The outcome of any exposure will be either a Fractional Irritant Concentration (FIC) or a 

FED.  A FIC will calculate the point at which the concentration of irritant is such that 

impairment will occur, whereas a FED calculates the point at which an effect occurs with 

the effect usually being either incapacitation or lethality [38]. 

 

 
Figure 6 – FED analysis for the occupant of a house during an armchair fire [46] 
 

In Figure 6, a comparison of these hazards is given as an example for the occupant of a 

domestic house during an armchair fire.  The point at which the FIC or the FED equals 1.0, 

identifies the time at which either irritation or incapacitation occurs. 

 

This figure is discussed further by Purser [46], where it can be seen that after approximately 

1.5 min sensory irritancy occurs with smoke obscuration occurring just after 2.5 min.  

Purser suggests that, whilst smoke obscuration and irritant gases are likely to delay and 

inhibit escape attempts, they are not likely to be the main cause of collapse or death.  He 

says that the main agents responsible for causing intoxication and loss of consciousness are 

the asphyxiant gases [23].  
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F&RS crews are likely to be able to perform a successful rescue on someone who is 

exposed to irritant gases but the same cannot be said for asphyxiant gas exposure. 

 

Sensory irritation would no doubt be unpleasant and smoke obscuration could increase the 

time taken to evacuate however, in reality people have an intimate knowledge of the 

internal layout of their domestic residence.  It is entirely conceivable that a person who is 

blindfolded could, through touch alone, find their way to an exit.  It is therefore more likely 

that people are able to overcome the incapacitating effects of irritant gases over the short 

escape distances found within a typical domestic property. 

 

Continuing along the timeline in Figure 6, it can be seen that incapacitation due to the 

asphyxiant gases occurs at around 5 min and impairment resulting from the effects of heat 

is predicted at approximately 6 min. 

 

1.5.2 Principles of Fractional Effective Dose 
 
FED is a methodology used in the assessment of the hazard of toxic fumes in human 

exposure to fire smoke.  Its basic principle is that 50% of the exposed healthy adult 

population will become incapacitated at a point where they have received a finite exposure 

level or an ‘incapacitating dose’ of asphyxiant gases.  The point at which an incapacitating 

dose has been received is therefore calculated with a knowledge of the concentration of 

asphyxiant gases inhaled against the duration of the exposure [15]. 

 

  tCD t  

Equation 1 – Human dose calculations 
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Where: - 

 
D is the product exposure dose of a given chemical species (ppm∙min) 

Ct is the concentration of the species (ppm) 

t is the duration of the exposure (min) 
 

A series of tests was completed on Macaque monkeys in the 1980s, these tests showed a 

number of findings [47].  Firstly, it showed that these animals were likely to become 

incapacitated at 30% COHb when active (encouraged to move around in their enclosure) 

and at 40% when they were at rest.  Secondly, it showed that incapacitation occurred when 

these animals had received a dose of around 27,000 ppm·min CO.  This figure was found 

to be consistent for exposures between 900 - 8,000 ppm equal to 0.09 - 0.80% and is seen 

to follow Haber’s rule.  A Macaque monkey has a typical body mass of around 10-15 kg. 

 

Fritz Haber’s rule was developed on the concept that the product of the concentration of a 

substance (C) and the length of exposure (t) produces a fixed level of effect and ultimately 

yields a curve similar to the one given in Figure 3 [48]. 

 

A second study completed on Baboons showed that the CO concentration required to 

incapacitate these animals, after a 5 minute exposure, was 6,850 ppm [35].  This represents 

a product exposure dose of 34,250 ppm·min as calculated in Equation 2.  This figure is 

similar to, but slightly greater than, that for the Macaque monkey and is consistent with the 

increase in body mass.  This figure has now been rounded up to 35,000 ppm·min and 

adopted as the standard incapacitating dose for humans. 

 

minppm250,345850,6 


D

tCD t  

Equation 2 – Baboon CO dose calculation 
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Similar tests were conducted for HCN, however it was established that the product 

exposure dose for incapacitation is not constant in the same way that it is for CO and does 

not follow Haber’s rule [19].  Instead it is seen that concentrations of around 90 ppm cause 

incapacitation after a 30 minute exposure, whereas 150 ppm can incapacitate after a couple 

of minutes.  The FED for exposure to HCN, follows an exponential function. 

 

 
Figure 7 – Relationship between incapacitation time/concentration for CO and HCN [46] 
 

The data gathered during these two studies is shown in Figure 7 and the difference in the 

shape of the two curves is clear.  For CO, the time to loss of consciousness decreases 

steadily in proportion to an increase in CO concentrations.  In contrast, the time to loss of 

consciousness with HCN is fairly steady below 150ppm with the times above that level 

decreasing rapidly.  As CO2 is not recognised as an asphyxiant gas it does not contribute 

directly towards the calculation for FED, its contributory affects are covered in Section 

1.6.1. 
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1.6 Analysis of the Heat and Asphyxiant Gas Hazard 
 
Human exposure to the life-threatening components of a fire is multi-faceted and it is 

important at this stage to establish a robust methodology for assessing this risk.  ISO 13571 

[15] provides such an appropriate methodology.  The relevant parts of the standard which 

are considered as part of this research project will be explored in more detail within this 

section of the thesis. 

 

The fundamental approach considers time-dependent concentrations of asphyxiant gases 

and thermal conditions with a view to estimating the time at which occupants will 

experience an effect.  This standard recognises that the guidance can be applied to estimate 

the time window during which the occupants can be rescued when they are immobilised 

due to injury, medical condition or entrapment for example [15]. 

 

In many texts, incapacitation is considered as an end point however there is some ambiguity 

surrounding the meaning of this word, for example collapse, unconsciousness and others.  

ISO 13571 therefore uses the phrase ‘compromised tenability’ to describe an end point as 

influenced by both physiological and behavioural responses as a result of exposure to fire 

hazards [15].  Tenability is defined within ISO 13943 [49] as the ability of humans to 

perform cognitive and motor skill functions at an acceptable level when exposed to a fire 

environment.  Where exposed individuals are able to perform cognitive and motor skills at 

an acceptable level, the exposure is said to be tenable.  Where they cannot, the exposure is 

said to result in compromised tenability [15]. 
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The time to compromised tenability, within this standard, focusses on four different hazards 

presented by fire with the hazard being realised first, defining the time to compromised 

tenability: - 

 
 Asphyxiant fire gases 

 Irritant fire gases 

 Heat 

 Visual obscuration due to smoke 

 

These four different hazards are discussed in Section 1.5.1 and as a result of the 

assumptions made within this section and the statistical analysis outlined in Section 1.7, it 

is considered that within domestic fire situations asphyxiant fire gases and heat represent 

the two greatest hazards. 

 

A main assumption of ISO 13571 is that there are variances in human susceptibility to fire 

hazards and therefore a logarithmic statistical distribution of these variances is taken.  The 

end point for each calculation represents the point at which 50% of the healthy adult 

population would experience compromised tenability.  Obviously, this means that the 

remaining 50% would have experienced a level of exposure which were tenable [15]. 

 

The standards consider that incapacitating 50% of the occupants is not an acceptable 

outcome, but based on the log normal distribution and other assumptions, at 0.3×FED 

approximately 11% would be incapacitated and at 0.1×FED it drops to around 1% being 

incapacitated. 
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1.6.1 Asphyxiant Gas Analysis 
 
This analysis considers the asphyxiant fire gases only and within the standard there are two 

approaches which can be considered.  The standard recognises that in cases where the fire 

effluent composition can be established through gas sampling, the toxic-gas model should 

be used.  Only where this data is unavailable, a more generic approach (mass-loss model) 

is used whereby an estimation of the concentration of asphyxiant gases is made on the basis 

of calculations from a known fuel source [15]. 

 

The toxic-gas model is used within this analysis and works on the basic principle of taking 

the exposure dose of each toxicant on a concentration time curve and integrating the area 

below the curve to establish a dose.  When the dose reaches a critical level it is assumed 

that compromised tenability has occurred. 

 

The toxic-gas model calculates the FED of each asphyxiant gas at each time increment 

using Equation 3. 

 

  t
tC

C
X

n

i

t

t i

i
FED 


 

1

2

1

 

Equation 3 – Simple model for calculating FED from asphyxiant gases 
 

Where: 

Ci is the average concentration of asphyxiant gas (ppm) 

Δt is the chosen time increment (min) 

(C·t)i is the specific exposure dose (ppm·min) 
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The dose for compromised tenability of CO was established as 35,000 ppm·min as 

discussed in Section 1.5.2.  The time taken for compromised tenability for CO is given in 

Equation 4 as the dose divided by the average concentration.  The 35,000 ppm·min 

represents a constant dose at which compromised tenability occurs. 

 

CO
COt


000,35

  

Equation 4 – Time to compromised tenability from CO 
 

Where: 

tCO is the time to compromised tenability for CO (min) 

φCO is the average concentration of CO (ppm) 

 

The dose for HCN cannot be represented as a constant as established in Section 1.5.2 and 

is instead given as an exponential expression which was derived as a best fit for the curve 

[15].  The time taken for compromised tenability for HCN is given in Equation 5. 

 
36.26102.1  HCNHCNt   

Equation 5 – Time to compromised tenability from HCN 
 

Where: 

tHCN is the time to compromised tenability for HCN (min) 

φHCN is the average concentration of HCN (ppm) 

 

By expanding Equation 3 to consider multiple asphyxiant gases and by including the curves 

established in Equation 4 and Equation 5, a new formula can be developed to consider the 

additive effect of CO and HCN.  This is given in Equation 6 and is taken from ISO 13571 

[15]. 

  



R.Walker PhD Thesis  1 – Literature Review 

 

 
37 

 

ttX
t

t

HCN
t

t

CO
FED 


 

2

1

2

1

6

36.2

102.1000,35


 

Equation 6 – Model for calculating FED with CO and HCN asphyxiant gases 
 

Where: 

CO  is the average concentration of CO (ppm) 

HCN  is the average concentration of HCN (ppm) 

Δt is the chosen time increment (min) 
 

It is estimated that the uncertainty given in Equation 6 is ±35% [15]. 

 

The only remaining factor to consider is that of hyperventilation bought about by exposure 

to CO2, as discussed in Section 1.3.3.  As a result of this effect, the formula is further 

modified to include a factor by which both the concentration of CO and HCN are 

multiplied.  Again this is an exponential function based on an empirical fit to human 

hyperventilation.  Equation 7 accounts for hyperventilation and is accurate to within ±20% 

[15]. 

 











5
exp 2

2

CO
CO


  

Equation 7 – Model for calculating the hyperventilation factor for CO2 

 

Where: 

2CO  is the frequency factor 

2CO  is the average concentration of CO2 (%) 
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With the inclusion of the hyperventilation factor, Equation 6 is rewritten as Equation 8: - 
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Equation 8 – Absolute model for calculating FED for asphyxiant gases 
 

This equation will be adapted into a spreadsheet in order to calculate the FED for each of 

the chosen scenarios at different locations. 

 

The ISO 13571 model also recognises the impact of O2 depletion although it does not 

consider O2 concentrations above 13% to be of concern [15], this is in accordance with 

Purser’s findings in Table 3. 

 

1.6.2 Heat Exposure Analysis 
 
Of the three types of heat transfer (conduction, convection and radiation), the two main 

types of heat transfer considered as a hazard to the occupant of a building are convection 

and radiation.  People are exposed to convective heat where they come into contact with 

the hot smoke layer.  They are likely either to be trapped within a compartment and the hot 

smoke layer descends to the point where people become immersed within it or people have 

to travel from a level above the fire down through a rising smoke plume. 

 

People are likely to be exposed to radiative heat where they are in the vicinity of flames 

and are unprotected by a physical barrier such as a wall or a door or they are exposed to 

heat radiated downwards from within a hot smoke layer. 
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Exposure to heat can be life threatening in three different ways [15]: - 

 
 Hyperthermia 

 Body surface burns 

 Respiratory tract burns 

 

For the purposes of considering escape from domestic fires, respiratory tract burns are not 

considered significant although they have been reported to have an adverse effect on the 

hospital based recovery of fire victims [50].  Thermal burns to this area of the body, from 

inhalation of air containing less than 10% by volume of water vapour do not occur in the 

absence of burns to the skin or the face [50].  When a fire is not suppressed by an automatic 

sprinkler the water vapour levels are usually low and tenability limits, with regards to skin 

burns, are normally lower [50]. 

 

Tenability limits for both convective and radiated heat exposure are both time dependent.  

Broadly speaking, convective heat at around 120°C can be tolerated for up to 4 min by 

unprotected skin and radiant heat of around 2.5 kW/m2 can be tolerated for around 30 s 

also on unprotected skin [38]. 

 

For convective heat exposure there are two separate calculations which consider tenability 

for clothed and unclothed skin.  For the purposes of this project, the equation for calculating 

the FED (XFED) for convective heat uses the formula for unclothed skin.  This recognises 

that the head is likely to be unclothed and it also gives a worst case tenability limit. 
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For unclothed skin the tenability limit is calculated using Equation 9. 

 

  4.37105  Ttlconv  

Equation 9 – Time to experience pain from convective heat 
 

Where: 

lconvt  is the tenability limit for experiencing pain from convective heat (min) 

T is the temperature (°C) 
 

In order to calculate the FED from convective heat, the reciprocal is taken [15]. 
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Equation 10 – Model for FED from convective heat 
 

For radiative heat there are also two calculations, one giving the tenability limit for second 

degree burns and the other for experiencing pain. 

 
9.12.4  qtlrad  

Equation 11 – Time to experience pain from radiative heat 
 

Where: 

lradt  is the tenability limit for experiencing pain from radiative heat (min) 

q is the radiant heat flux (kw m-2) 
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In order to calculate the FED from radiative heat, again the reciprocal is taken [15]. 
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Equation 12 – Model for FED from radiative heat 
 

Bringing together Equation 10 and Equation 12 allows for the calculation of the FED of 

the additive effects of both convective and radiative heat. 
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Equation 13 – Model for FED from convective and radiative heat 
 

As with the toxic gas model, the effects of convective and radiative heat are additive.  The 

formula used for FED calculations from heat exposure is given in Equation 14. 
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Equation 14 – Absolute model for FED from heat exposure 
 

  



R.Walker PhD Thesis  1 – Literature Review 

 

 
42 

1.6.3 Variances in Human Subpopulations  
 
The methodology given so far in Section 1.6 is based on a dose which effects 50% of 

healthy adults (animal or human).  It is recognised that some human subpopulations are 

more susceptible to toxic smoke namely children, the elderly and those suffering from 

chronic conditions such as asthma, for example [38] [51].  Nelson showed that the average 

COHb levels in the elderly cadavers are lower than in younger adult ones [25]. Purser 

recognised that there is a distribution in the levels of COHb found in persons who died as 

a result of exposure to the asphyxiant gas CO [38].  The ISO 13571 model also recognises 

the impact of O2 depletion although it does not consider concentrations above 13% to be 

of concern [38], in accordance with Purser’s findings. 

 

Figure 2 shows that victims died with <30% COHb in their blood whereas other victims 

survived long enough to inhale enough CO to take their blood COHb level in excess of 

90%.  To allow for variances in susceptibility, to provide a factor of safety and to consider 

the more vulnerable members of society, PD 7974-6 suggests that a tenability endpoint of 

0.3×FED be considered [42].  The same safety factor is also given in ISO 13571 [15].  It 

should be noted that it is unrealistic to set an absolute safe limit and that some people will 

suffer compromised tenability and even die as a result of exposure to 0.3×FED or less [52]. 

 

Lethality is expected to occur at a point where the values are 2-3 times greater than those 

for compromised tenability [46]. Two exposure endpoints will be used to estimate the point 

where lethality occurs, 1.0×FED will be considered as a conservative end point for the 

vulnerable population (i.e. 0.3×2.5≈1.0) and 2.5×FED will be considered for healthy adults 

(i.e.1.0×2.5≈2.5).  This methodology and the proposed end points were discussed and 

agreed as appropriate with D.Purser in a private communication.  
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1.7 Initial Analysis of Fire Statistics 
 
Data and information is gathered in many fields.  When analysed and interpreted, this data 

can often be used to identify trends and to predict likely future outcomes.  In the fire arena, 

this is very much the case and those who are involved in preventing and responding to fires 

regularly use fire statistics.  In a recent survey of EU member states, into the users of and 

uses for fire data, responding organisations, such as the F&RSs, were the main user with 

government departments, insurers, researchers and regulators also using the data [53]. 

 

This EU survey also identifies the main use of fire statistics as respondents using data to 

inform government policy, to raise awareness of trends, to develop strategies to prevent 

fires and fire deaths and to evaluate F&RS performance. 

 

In the UK, data from fire incidents has been recorded and gathered for many years.  

Between 1952 and 1973, this data was collated by the Fire Research Station (part of the 

Buildings Research Establishment), acting as agents for the Home Office, who prepared an 

annual report of some basic findings [54].  Then in 1980 the Home Office themselves 

started to report on UK Fire Statistics.  Their reports were produced every 5 years and 

included 10 years of data, e.g. the 1980 report covered the period from 1970-1980 [55].  

Traditionally, this data was collated by government officials and a report was produced.  

These reports focus heavily on the following areas: - 

 
 The incidence of fires – Numbers, geographic location, building types and occupancies, 

F&RS activities, numbers and methods of rescue, fire size, sources of ignition, causes and 

fire occurrence times (hours, days, months) 

 Human involvement with fires – Number of fatal and non-fatal casualties, nature of injury, 

casualty details such as age, sex and other sociodemographic groupings, building types and 

fire and casualty locations within 
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1.7.1 Background of Fire Statistics 
 
Fire statistics in the UK are based on data received primarily from the Fire and Rescue 

Services.  This data is gathered by each F&RS independently and is then reported to 

government statistics officers for collation and analysis on an annual basis.  Each F&RS 

will gather data from both its Fire Control centre, where 999 calls are handled and fire 

appliances are mobilised, and also from Incident Commanders.  The Incident Commander 

is the individual in charge of an incident, who is located at the fire scene, who will need to 

gather information and report this on their return to the fire station.  Further details can then 

be added as they become available, for example the findings of a pathologist during a post-

mortem of a fire victim should also be included. 

 

The statistical reports produced by government officials contain significant amounts of 

information and analysis.  However, they are produced in written form with the raw data 

not generally being made available for further in-depth analysis.  Whilst each F&RS will 

have internal access to its own raw data, the data sets can be of limited statistical value, for 

example, a large Metropolitan F&RS may have only 15-20 fire fatalities each year.  As a 

result of these two factors, it is difficult for academic researchers to closely examine the 

root causes and the factors which contribute to fire fatalities and injuries.  The analysis 

presented within this section of the thesis is based on the government’s published data. 
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1.7.2 Fire Data Report 
 
In 1994 the Fire Data Report (FDR) was introduced.  This was initially a paper based report 

which sought to gather a significant amount of valuable information about primary fires 

[56].  Primary fires include all fires in buildings, vehicles and outdoor structures or any fire 

involving casualties, rescues or fires attended by five or more fire appliances [6].  An 

example of an FDR report is provided in Appendix A. 

 

This method of reporting was used across all of the F&RSs in GB for the next 15 years 

until a new system was implemented in April 2009.  The new system was introduced to 

address a number of failings raised in an independent review of the Fire Service by 

Professor Sir George Bain in 2002 (known as the Bain Report 2002) [57].  The new system 

also recognised the Fire and Rescue Services Act 2004 and its requirement to collect data 

for special service calls (other incidents attended by a F&RS where there is no fire involved, 

such as a Road Traffic Collision (RTC)) [58].  The change was also influenced by the 

introduction of the Integrated Risk Management Program (IRMP) and the introduction of 

the National Framework [56]. 

 

1.7.3 Incident Recording System 
 
In April 2009 the Incident Recording System (IRS) was introduced by the Department for 

Communities and Local Government (DCLG), with this system currently being used by all 

F&RSs as of Jan 2017.  This new approach replaced FDR with a computer based system 

which enabled the gathering of more detailed information on incidents attended by an 

F&RS.  This system is capable of extracting information from an incident mobilising 

system and pre-populating the IRS report. 
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This should support the Incident Commander to populate the remaining information more 

efficiently.  Table 4 shows the number of questions required to complete an IRS report for 

a number of different incident types. 

 

 
Table 4 – Questions required to complete an IRS report [56] 
 

It can be seen that more data is gathered at those incidents which involve casualties.  For 

example a fire in a house which involves a casualty would require 94 questions to be 

answered, twenty of which could be pre-populated from automatic recording systems 

within the fire control room and on the fire appliance.  This critical data is collected in order 

to gain a greater understanding of those incidents which impact most upon people.  

Preventing these types of incidents and responding effectively to them is seen as critical to 

all F&RSs. 

 

FDR data was originally gathered in calendar years however, since 2000, FDR and now 

IRS data is gathered in financial years from 1st April to 31st March the following year. 
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1.7.4 Fatal and Non-fatal Casualties 
 
When considering human survivability in a building fire, statistical data is split into 

incidents which involved fire related fatalities and incidents where people were injured as 

a result of being exposed to heat, smoke or both.  This section of the thesis explores these 

interactions and draws upon historical data to identify current trends.  It is important to note 

that this analysis does not include firefighter casualties. 

 

1.7.5 Fatal Casualties 
 
Fire fatalities occur reasonably frequently across GB with some 322 people dying in fire 

related incidents in the year 2013/14.  Recent numbers of fatal casualties are significantly 

lower than those seen in the 1980s where numbers peaked at around 1,000 people losing 

their lives to fire every year. 

 

 
Figure 8 – Fatal casualties from fire 1952-2014 
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Figure 8 shows the number of fire fatalities each year since 1952.  The graph displays actual 

numbers of fatalities and also shows a red trend line.  This trend line illustrates that the 

number of annual fire fatalities was around 500 people in the early 1950s at which point it 

rose sharply until the numbers had nearly doubled by around 1980.  Since the mid-1980s, 

the numbers of people dying in fires has dropped steadily such that, in recent years, they 

are below the 400 mark for the first time since national data was gathered. 

 

The increase in fire fatalities from the 1950s is largely attributed to an upturn in the use of 

man-made plastics in households.  Traditional materials such as wood, cotton, wool and 

leather gave way to synthetic materials e.g. fabrics and polymeric foams.  These man-made 

materials were not only more ignitable, but when they became involved in fire, released a 

greater amount of the toxic compounds which adversely affect humans [59]. 

 

The decrease in fire fatalities, since its peak in the early 1980s, most likely comes as a result 

of two factors.  Smoke detection became more widely available and more affordable and 

their use was encouraged by changes to guidance and building regulations.  As a result, an 

increase in smoke alarm ownership from around 8% of households in England and Wales 

in 1988 to around 78% in 2003 has been seen [6].  Since then, the ownership of a ‘working’ 

smoke alarm has increased further to 88% in 2012/13 [6]. 

 

In addition, the Furniture & Furnishings (Fire) (Safety) Regulations were introduced in 

1988 [60].  These regulations were designed to ensure that the flammable components in 

furniture met stricter regulations in terms of ignitability.  Specifically materials should be 

resistant to ignition sources such as matches and cigarettes.  Other factors such as 

reductions in the use of open flame heating and changes in smoking habits may contribute.



R.Walker PhD Thesis  1 – Literature Review 

 

 
49 

1.7.6 Non-fatal Casualties 
 
In respect of non-fatal fire casualties or ‘fire injuries’, the trend is slightly different.  The 

number of non-fatal fire casualties was around the 3,000 mark during the mid-1950s and 

rose steadily until around 1980 at which point a significantly sharper rise started to occur.  

The number of non-fatal fire casualties peaked at around 18,000 in the late-1990s and has 

since halved to just above 9,000 in 2013/14 [6]. 

 

 
Figure 9 – Non-fatal casualties from fire 1952-2014 
 

Whilst there was a steady rise in the numbers of non-fatal casualties from the mid-1950s, 

this became somewhat exacerbated by the inclusion of people who received a 

‘precautionary check-up’.  The inclusion of this group within the statistical data set started 

in 1983 and had not previously been incorporated. 
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There is no sharp increase from the 1950s as with fatalities, instead there is a delay until 

the 1970s when an increase is seen.  The peak is also later at around 1998 at which point 

fire fatalities were very much on the decrease.  A comparison of the fatal and non-fatal 

curves is given in Figure 10, note that there are two separate scales on the y-axis. 

 

 
Figure 10 – Fatal and Non-fatal casualty comparison 1952-2014 
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1.7.7 The Role of the Pathologist 
 
At this point, it is worth understanding the role played by a pathologist, when determining 

the cause of a fire death.  When someone dies and there is evidence to suggest that their 

death may have been caused by the heat or smoke from a fire it is standard practice for a 

post-mortem to be conducted.  These post-mortems are carried out either by local hospital 

pathologists or by forensic pathologists as determined by the nature of the fatality. 

 

The role of a pathologist is often limited to establishing if the victim was (i) alive when the 

fire started and then developed and (ii) if there were any other injuries or circumstances 

that may have led to the victim dying prior to a fire occurring or preventing their escape. 

 

Funding for post-mortems is restricted and as a result the pathologist is very likely to place 

more focus on establishing if the fire contributed towards the death rather than specifically 

looking at the individual effects of either smoke or heat, i.e. the mechanism of the fatality.  

A pathologist will routinely conduct the toxicological analysis of a victim’s blood or 

organs, looking for drugs (prescription and recreational), alcohol and CO levels.  HCN is 

rarely considered during this process. 

 

In England and Wales, there is a mechanism for investigating sudden, suspicious or 

unexplained deaths [61].  As a result, the investigation aims to identify three aspects. 

 
 What was the cause of death? 

 Was the death a possible homicide? 

 Have any public health concerns been identified? 
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The findings of the pathologist will then be given to a coroner to support their inquest with 

the aim of providing a verdict that identifies whether the victim was: - 

 
 Lawfully killed 

 Unlawfully killed 

 Accidental death 

 Killed himself/herself 

 Open verdict 

 

The strength of a police investigation and the level of suspicion around foul play may also 

impact upon the extent of the pathological investigation.  Where there is a strong suspicion 

that an unlawful act has been committed, this may lead to a more thorough investigation 

from a forensic pathologist.  This is however costly and as a result many investigations are 

less comprehensive and carried out by a local authority pathologist. 

 

The author has had a number of conversations with people from within the field of 

pathology, with the general consensus described herein.  An initial post-mortem is almost 

certain to be conducted by a local authority pathologist unless the police request a forensic 

investigation.  In only a small number of cases, where the cause of death is identified as 

suspicious, and there is significant interest from the police, will the cadaver be passed to a 

forensic pathologist for a further and more in-depth post-mortem. 

 

During both types of post-mortem, the primary concern is to establish if the fire contributed 

towards the fatality or if there was some other natural or unnatural factor involved.  Once 

it has been established that the fire was in some way a contributory factor, the actual 

mechanism by which the fatality occurred is then of much less significance. 
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Neither a hospital nor a forensic pathologist is likely to go to any great length to distinguish 

between a fatality occurring as a result of smoke inhalation and one occurring as a result of 

exposure to heat.  While death causes breathing cessation, burns continue to occur after 

death.  This type of in-depth analysis can be prohibitively costly and unless it is absolutely 

clear that one or the other does not exist, there is a chance that the cause of death will be 

given as a combination of exposure to both heat and smoke.  As a result, there may be some 

inaccuracies in respect of the fire statistics that are produced annually by the DCLG. 

 

Whilst there is a desire to establish the cause of death for anyone exposed to fire, there is a 

question over the validity of the data produced by pathologists as a guideline for developing 

fire protection systems.  Shepherd provides guidance, from qualified pathologists, in an 

attempt to focus on ways for better protecting people during domestic fires [61]. 

 

1.7.8 Initial Statistical Analysis 
 
An initial statistical analysis has been conducted to try to establish the trends that are 

present in respect of both fatal and non-fatal fire casualties.  This data has been extracted 

from government statistics reports and is based on data provided by the F&RSs.  Data has 

been gathered from Fire Research Station reports from 1952-73 inclusive, Home Office 

reports from 1980-95 inclusive and annual DCLG reports from 2006 to 2014 inclusive. 

 

This data shows that in the most recently reported year (Apr-13 to Mar-14) there were 322 

fatal casualties and 9,748 non-fatal casualties as a result of fire, not including firefighters.  

This section of the thesis uses data presented by these sources only and does not make any 

use of raw data.  It builds upon the data given previously and identifies both the locations 

in which fire casualties occur and the nature of any injury sustained for both casualty types.
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1.7.9 Fatal Casualties 
 
When fire fatalities occur, two of the important factors that are considered are where the 

fire occurred and what the cause of death was.  Recent fire statistical reports place the 

location of the fire into one of four categories: - 

 
 Dwellings – residential homes and houses in multiple occupation (HMOs) 

 Other Buildings – B&B, halls of residence, offices, shops, factories, public buildings etc. 

 Outdoors (Road Vehicles) 

 Outdoors (Other) – fields, woodland and derelict vehicles/buildings 

 

Fire location data was not recorded prior to 1970 and before 1981, the two categories of 

Outdoors (Road Vehicles) and Outdoors (Other) were grouped together as ‘Outdoors’. 

 

 
Figure 11 – Fatal casualties by location 
  

0

200

400

600

800

1,000

1,200

N
u
m
b
er
 o
f 
Fa
ta
l F
ir
e 
C
as
u
al
ti
es

Fatal Fire Casualties by Location

Dwellings Other Buildings Outdoors (Road Vehicles) Outdoors (Other) Outdoors



R.Walker PhD Thesis  1 – Literature Review 

 

 
55 

Figure 11 shows that the majority of fire fatalities occur in dwellings and account for 77% 

of deaths over the last ten years.  Over the same time period, only 6% of fatalities occurred 

in other buildings, with 11% in road vehicles and 6% elsewhere outdoors. 

 

The cause of a fire fatality will be approximated by a Fire Officer in the first instance and 

is usually then confirmed by a pathologist, with the fire statistics being updated where 

necessary.  A fire fatality is categorised as follows: - 

 
 Burns – presumably where there is evidence of severe burns with low levels of COHb, if 

indeed it is possible to test for COHb levels as a result of the degree of burn damage 

 Overcome by gas/smoke – presumably where there are high levels of COHb and little 

evidence of burns 

 Burns and overcome by gas/smoke – presumably where there are severe burns and high 

levels of COHb and the pathologist considers that both were contributory towards the cause 

of death 

 Other – this causation is often used where there is evidence to suggest that the victim was 

dead prior to the fire occurring 

 Unspecified – where an incident is subject to an ongoing criminal investigation, the coroner 

may record an unspecified cause and this may not have been subsequently updated 

 

This information should be taken in the context of the role of the pathologist which is 

discussed in Section 1.7.7.  The data for fatal casualties by cause is shown in Figure 12 

although no data is presented for 1975 as a result of industrial action taken by F&RSs and 

in 2009/10 one of the F&RSs failed to provide a completed record to DCLG.  Data for 

these two years is omitted.  Figure 12 also identifies the point where fire deaths were 

reclassified to consider a fatality as a result of a combination of both heat and smoke. 
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Figure 12 – Fatal casualties by cause 
 

Over the last ten year period of data gathering (omitting 2009/10), it can be seen that smoke 

inhalation caused 40% of fatal fire casualties with the remainder being burns (25%), a 

combination of smoke and burns (18%), other (5%) and unspecified (12%).  This data is 

also shown in Figure 13. 

 

If it is assumed that all ‘Other’ fire fatalities do not necessarily occur as a result of exposure 

to the fire and that those ‘Unspecified’ fire fatalities eventually fall proportionately into 

one of the other three categories, the analysis can be repeated and adapted. 

 

This shows that as many as 48% of fatal fire victims are caused by smoke inhalation alone, 

30% are caused by burns and the remaining 22% are either indecipherable between the two 

or are caused by a combination of the two, see Figure 14. 
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Figure 13 – Fatal casualties by cause (2004/05 to 2013/14) 
 

 

 
Figure 14 – Fatal casualties by cause adapted (2004/05 to 2013/14) 
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With the number of fatal fire casualties being reasonably low in statistical terms (generally 

500 – 1,000 per annum), there is a potential for significant year-on-year differences.  The 

data has therefore been considered in respect of each grouping as a percentage of the annual 

total of fatal casualties.  This data is given in Figure 15 and shows an initial change 

(between 1952 and 1980) from injuries being caused by burns towards injuries being 

caused by smoke. 

 

 
Figure 15 – Percentage of fatal casualties by cause (1952 to 2014) 
 

Within Figure 15, it can be seen that these trends continue up to around 1980 and then the 

trends change.  This is explored further in Figure 16 and Figure 17. 
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Figure 16 – Percentage of fatal casualties by cause (1952 to 1980) 
 

Between 1952 and 1980, there was a significant change in the recorded cause of fatal fire 

casualties.  In the early-1950s, around 75% of all fire deaths were attributed to burns with 

around 10% being attributed to smoke inhalation.  In the intervening period between 1952 

and 1980 the number of fatalities being attributed to burns, fell proportionally to around 

25% and fatalities, resulting from smoke inhalation, rose proportionally to around 50%. 

 

As previously discussed, this is most probably as a result of the more widespread use of 

plastics in households during this time. 
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Figure 17 – Percentage of fatal casualties by cause (1981 to 2014) 
 

However, from 1980 to 2014 the trend lines change somewhat, with the two main causes 

of fire deaths decreasing steadily as a new category is introduced.  The new category, which 

accepts that fire fatalities can occur as a result of a combination of exposure to heat and 

asphyxiant gases, rises steadily from around 11% in its first year as a recognised category 

to around 20% by 2013/14. 

 

Whilst the number of ‘Other’ fire fatalities is generally small and consistent over this time 

period, the number of ‘Unspecified’ fire fatalities also increases from around 7% to around 

12%.  As a result, the number of fire deaths classified as being caused by ‘Burns’ or 

‘Smoke’ alone steadily decrease but remain proportional to one another. 

  

0%

10%

20%

30%

40%

50%

60%
1
9
8
1

1
9
8
2

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0
/0
1

2
0
0
1
/0
2

2
0
0
2
/0
3

2
0
0
3
/0
4

2
0
0
4
/0
5

2
0
0
5
/0
6

2
0
0
6
/0
7

2
0
0
7
/0
8

2
0
0
8
/0
9

2
0
0
9
/1
0

2
0
1
0
/1
1

2
0
1
1
/1
2

2
0
1
2
/1
3

2
0
1
3
/1
4

Percentage of Fatal Fire Casualties by Cause 1981‐2014

Burns Smoke Smoke/Burns Other

Unspecified Linear (Burns) Linear (Smoke) Linear (Smoke/Burns)

Linear (Other) Linear (Unspecified)



R.Walker PhD Thesis  1 – Literature Review 

 

 
61 

1.7.10 Non-fatal Casualties 
 
Non-fatal fire casualties have been considered in the same way through an analysis of the 

locations where these fires occur and also the nature of the injury which occurs.  With 

regards to non-fatal casualties the total number is some 30 times greater than for fatal 

casualties and so the data set has greater statistical validity. 

 

Fire location data uses the same categories for both fatal and non-fatal casualties and was 

not recorded prior to 1970.  Before 1981, the two categories of Outdoors (Road Vehicles) 

and Outdoors (Other) were grouped together as ‘Outdoors’. 

 

 
Figure 18 – Non-fatal casualties by location 
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Figure 18 shows that the majority of fire injuries also occur in dwellings, with the last ten 

years of data showing that 81% of all fire injuries occur in this location.  Over the same 

time period 10% of injuries occurred in other buildings, with only 5% in road vehicles and 

4% elsewhere outdoors.  The data for non-fatal casualties by cause is shown in Figure 19 

although again, no data is presented for 1975 and 2009/10. 

 

 
Figure 19 – Non-fatal casualties by cause 
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injuries, recorded as having a precautionary check-up only. 
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1.7.11 Conclusions from the Initial Statistical Analysis 
 
The analysis within this section shows that, over the last ten years, 77% of all fire deaths 

and 81% of all fire casualties occur as a result of fires within dwellings.  In addition, smoke 

inhalation is the major cause of fatal casualties resulting in 40% of deaths (arguably up to 

70%) and is a major contributor to non-fatal casualties resulting in 28% of injuries, over 

the same time period.  In recent times, an increasing number of people are taken to hospital 

for a precautionary check-up and this is now the main classification for fire injuries with 

47% over the last ten years. 

 

 
Figure 20 – Rate of fatal and non-fatal casualties (per 1,000 fires) 
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Figure 20 shows that, since fire statistics were first compiled in the UK in 1952, the rate of 

fatal casualties per 1,000 fires has dropped steadily from around 5 to around 1.5 in recent 

times.  Conversely, the rate of non-fatal casualties per 1,000 fires has doubled from around 

20 to around 40.  It can be seen that the rise in injuries can be attributed to the inclusion of 

precautionary check-ups to some extent with figures rising sharply from 1983 onwards, 

when this category was introduced. 

 

1.7.12 Victims of Fire 
 
An internal review, conducted by officers from the WMFS, considered fire-related deaths 

in the region, over a 5-year period.  The review concluded that 80% of fatalities occurred 

with one or more of the following contributory factors [62].  This supports other evidence 

found [63][64][65]:- 

 Persons suffering from social deprivation [66][67], 

 Elderly persons, 

 Persons with mental or physical disabilities, 

 Persons under the influence of alcohol [68]. 
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1.8 Large-scale Fire Tests 
 
This section aims to review the available literature relating to large-scale fire tests that have 

been conducted on dwellings and consider human exposure to heat and/or asphyxiant gases.  

A number of separate studies have been identified and each of these are described in the 

following sub-sections. 

 

1.8.1 The Toxicological Impact of Basement Fires 
 
A study undertaken by Joseph Su of the National Research Council of Canada, aimed to 

determine tenability conditions in a dwelling with a fire located in the basement [69].  It 

uses the Canadian system for floor numbering, i.e. the basement is the cellar, the first storey 

is the Ground Floor and the second storey is the First Floor as seen in Plate 1. 

 

 
Plate 1 – Internal layout of the test facility [69] 
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Internal walls and floors were constructed and then external walls were built as shown in 

Plate 2.  The internal layout of the three storeys can be found in Appendix B. 

 

 
Plate 2 – External layout of the test facility [69] 
 

The aim of Su’s research was to establish the sequence of events during a fire within this 

structure, looking at smoke alarm activation, the onset of untenable conditions and, for a 

separate study, structural failure of the floor above the basement.  Su used uncovered 

polyurethane foam and wooden cribs as the fuel to simulate a sofa fire in the basement [69].  

In all experiments one of the second storey bedroom doors was open and one was closed.  

There were various experiments with the basement door in the open and closed positions 

and Su considered tenability from the perspective of both heat and toxic gas exposure. 
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Smoke obscuration was the first criterion to be met, with visibilities of 1m being reached 

at the first storey doorway to the basement at around 180 s.  Where the doorway to the 

basement was closed, the escape time from the upper floor was roughly doubled from 

around 240 s to 500 s. 

 

This test house was typically open plan on the first storey however, photoelectric smoke 

alarm response times were consistently around 42 s in the room of fire origin (ROFO), 

around 61 s on the first storey and around 120 s on the second storey with the basement 

door open.  With the basement door closed the response times were identical in the ROFO, 

they were extended to 79 s on the first storey and to 185 s on the second storey.  Where the 

doorway from the basement to the accommodation is closed, there is a delay in the actuation 

of the smoke detector however, the extension of the escape times in these scenarios is more 

than compensatory. 

 

This study claims that untenable conditions were not reached at any time within the second 

storey bedroom with a closed door [69].  Tenability in the circulation spaces was calculated 

using the methodology in ISO 13571, although no consideration was given to the effects 

of HCN as only data for CO and CO2 were gathered. 

 

Each test was conducted for 500 s in duration (just over 8 min).  Where the basement door 

was open, the worst case conditions on the first storey were, <5% O2, 45,000 ppm CO and 

140,000 ppm CO2.  Where the basement door was closed, worst case conditions on the first 

storey were, 19% O2, 10,000 ppm CO and 20,000 ppm CO2, remembering that this building 

is unusually open plan, when compared with homes in the UK. 
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The data presented in Figure 11 of the Su report and reproduced in Appendix C, agrees that 

CO/CO2 yield ratios are broadly in the region of 0.20-0.25 [69].  The data described above 

is brought together in Table 5. 

 
 Basement Door Open Basement Door Closed 

Average Alarm Actuation (s)   
   
Basement 42 45 
First Storey 61 79 
Second Storey 120 185 
   
Average Time Available for 
Escape where FED=1 (s) 

  

   
First Storey 230 500 
Second Storey 250 500 
   
Average Concentration of Gas 
on the First Storey 

  

   
O2 (%) <5 19.0 
CO (%) 4.5 1.0 
CO2 (%) 14.0 2.0 
   

Table 5 – Results from the NRC study 
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1.8.2 Tenability Analysis from the Su Study 
 
A comparison between the time to compromised tenability for heat and asphyxiant gas is 

given in Table 6.  The table is split into open and closed door tests and shows the tenability 

time for both heat and toxic gas for comparison.  Where the basement doorway is closed, 

it can be seen that in 11 of the 12 tests, the time to compromised tenability from asphyxiant 

gas occurs before that for heat.  Where the basement doorway is open, it can be seen that 

in the area close to this doorway, a combination of heat and asphyxiant gas compromised 

tenability occurs, with 5 occurrences as a result of asphyxiant gas and 7 occurrences as a 

result of heat exposure.  Where measurements are taken more remotely from the fire, on 

the second floor, again it can be seen that in 10 of the 12 tests, the times to compromised 

tenability from asphyxiant gas occurred before those for heat. 

 

 1st Storey SW Quadrant  2nd Storey Corridor 

  Asphyxiant Gas  Heat  Asphyxiant Gas  Heat 

  0.3  1.0  0.3  1.0  0.3  1.0  0.3  1.0 

  Tests with Open Basement Doorway 

UF‐01  205  235  230  280  225  255  320  435 

UF‐03  209  240  205  213  225  247  252  330 

UF‐04  220  260  207  215  245  280  250  290 

UF‐05  206  232  220  240  235  260  270  320 

UF‐06  198  233  202  211  208  241  229  254 

UF‐07  225  265  192  207  230  275  225  255 

  Tests with Closed Basement Doorway 

UF‐02  466  679  1086  1196  362  501  1171  1241 

UF‐08  400  510  482  486  375  510  507  FED < 0.5 

UF‐09  329  484  786  796  364  504  FED < 0.2  FED < 0.2 

Table 6 – Tenability time (seconds) for asphyxiant gas and heat 
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1.8.3 Toxicological Analysis of an Armchair Fire 
 
A study conducted by David Purser aimed to complete the toxic hazard assessment of a 

dwelling fire scenario [23].  Test facility consisted of a two-storey rig with an armchair 

located within the ground floor lounge, the door to the hallway was partially open.  This 

study focused on fire scenarios with limited ventilation.  Upstairs were two bedrooms one 

with a closed door and one with an open door.  Kitchen and bathroom doors were closed.  

Data considered the effect of exposure to both asphyxiant gas and heat. 

 

Data gathered from the test showed an incubation period for the fire of around 2-3 min after 

which the fire started to grow rapidly.  Quintiere recognises that, in the early stages of fire 

growth, development is slow until a point where the fire starts to take hold [70]. 

 

Due to the limited amount of external ventilation to the fire, the peak lounge ceiling 

temperature was around 350 °C and the fire self-extinguishes at 9 min.  The maximum CO 

concentration in the fire compartment reached 11,000 ppm (1.1%) and peak HCN 

concentration was measured at 1,100 ppm.  The ionisation detector sited in the lounge 

actuated at around 30 s.  Compartment fires are almost always under-ventilated and under 

these conditions the yield of toxic products would be expected to be much greater [71][72]. 

 

There was enough smoke on the first floor landing to actuate the ionisation detector at 

around 120 s.  Temperatures in the open door bedroom peaked at around 9 min at 60 °C.  

The irritant smoke would become problematic to an occupant situated in the open door 

bedroom at around 4.5 min and unconsciousness is predicted at around 6.5 min as a result 

of the asphyxiant gases.  The presence of a closed door in the second bedroom would have 

protected its occupants for more than 20 min.  
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This information is reproduced in Table 7. 

 
 Lounge Door Open 

Average Alarm Actuation (s)  
  
Lounge 30 
First Floor Landing 120 
  
Average Time Available for Escape 
where FED=1 (s) 

 

  
Open Door Bedroom 390 
Closed Door Bedroom >1,200 
  
Maximum temperature (°C)  
  
Lounge (@9min) 350 
Open Door Bedroom (@9min) 65 
  
Peak Concentration of Gas in the Lounge  
  
CO (%) 1.1 
HCN (%) 0.11 
  

Table 7 – Results from the Purser study [23] 
 

This study concluded that: - 

 Occupants of the fire room and the open door bedroom would have been at serious risk 

from the fire. 

 The time between detection and loss of tenability was very short (around 2 min) with the 

fire compartment door open. 

 Closing the door of the fire compartment greatly reduces the hazard to the rest of the house. 
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1.8.4 Tenability Analysis from the Purser Study 
 
Purser’s study concluded that a number of different hazards would be presented to the 

occupants of the fire compartment (lounge) and he considered the timescales associated 

with each of these hazards.  Two smoke detectors were located within the premises with 

the lounge detector actuating at around 30 s and the detector on the first floor actuating at 

around 120 s after ignition.  It is worth noting that it is unusual for smoke detectors to be 

located in rooms which are occupied in domestic premises, and it is more typical to find 

them in the circulation areas (hallway and landing). 

 

The first hazard faced by the occupant of the lounge is smoke, with Purser’s analysis 

suggesting that smoke irritancy occurs at around 1.5 min.  At this point, the occupants of 

the lounge are most likely to suffer difficulties in seeing, due to painful eye irritation and 

may also have some breathing difficulties, with these effects hampering but not preventing 

escape [23]. 

 

Around a minute later, at 2.5 min, the occupant will no longer be able to see the nearest 

doorway due to the effects of visual obscuration from the smoke.  Visibility at this point 

will be less than 2 m, however, this effect is also unlikely to prevent escape, as the occupant 

would not be expected to be too disorientated due to the relatively small size of a typical 

lounge room and the intimate knowledge that the occupant is likely to have [23]. 
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The situation in the lounge becomes much more serious after 5 min where a person exposed 

to the smoke would be expected to collapse and become unconscious as a result of the 

combined effects of the asphyxiant gases CO and HCN.  Purser suggests that 

unconsciousness will result largely as a result of the presence of HCN and that if the 

asphyxiant gas CO is considered alone, unconsciousness would not be predicted for a 

further 2 min [23]. 

 

Exposure to heat is likely to cause compromised tenability for an occupant of the lounge at 

around 6 min with the effect being burns to any areas of unprotected skin.  The FED dose 

calculations for the times to compromised tenability in the lounge, as derived by Purser, 

are depicted in Figure 21. 

 

 
Figure 21 – Time to compromised tenability in the lounge (Purser) [23] 
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Purser also considers the hazards presented to the occupants of the bedroom with the open 

door.  The hazard of smoke obscuring occupant visibility occurs at around 4.5 min and after 

this time there is likely to be a delay for people in this room to find their way out of the 

bedroom and down the stairs [23].  The occupants may well find that they are faced with a 

situation where they need to make a decision to try to escape via the stair or to close the 

bedroom door and either wait for a F&RS rescue or escape via a window. 

 

Soreness to the eyes and difficulty with breathing would occur at around 5.5 min.  Again 

this is not likely to prevent an escape but may be a contributory factor in the decision to 

either evacuate or stay put.  Considering the list given in Section 1.7.12, there is a high 

probability that a significant number would decide not to attempt to self-evacuate in the 

presence of irritant gases. 

 

At around 6.5 min unconsciousness in the open bedroom occurs as a result of the inhalation 

of the asphyxiant gases CO and HCN and, as with the lounge, this effect occurs 

predominantly as a result of HCN [23].  Where the effects of the asphyxiant gas CO are 

considered in isolation, unconsciousness would be expected at around 9 min. 

 

During these experiments, the temperature in the open bedroom is insufficient to cause 

compromised tenability.  The most likely reason for this is that, as the smoke travels from 

one room to another it entrains clean air as a result of the turbulent effects of fluid dynamics.  

This clean air is of a sufficiently low temperature to dilute the hot smoke layer and to 

significantly reduce its temperature.  The effects discussed here are shown as a graph in 

Figure 22. 
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Figure 22 – Time to compromised tenability in the open bedroom (Purser) [23] 
 

Purser also analyses data from within the closed door bedroom and concludes that the 

occupants of this room would be protected for a period in excess of 20 min [23].  It would 

still be the case that the occupants may need to decide whether to pass down the staircase 

or to stay within the bedroom and keep the door closed. 
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1.8.5 Analysis of Family Home Fire Dynamics 
 
This study was conducted by Stephen Kerber of the Underwriter’s Laboratory in the United 

States [73].  It focused on the effects of active firefighter ventilation activities during a fire 

but it also gathered information relating to occupant compromised tenability from both heat 

and toxic smoke in several locations within a domestic home.  Using purpose built test rigs 

with the layout of single and two storey family homes, a series of 15 fires were conducted 

with various ventilation arrangements. 

 

During this study, fires were ignited in the living room of the single storey accommodation 

and in the family room of the two-storey accommodation.  For the single storey tests, 

temperature and gas concentration measurements were taken in the fire compartment 

(living room) and in two nearby bedrooms, one with its door open and one with its door 

closed.  In the two-storey tests, temperature and gas concentrations were also taken in the 

fire compartment and in the upper storey hallway which was open to the fire compartment 

on the lower floor. 

 

Temperature and gas concentration measurements were taken at 0.3 m and at 1.5 m from 

floor level to identify exposure for both an adult in the standing position (1.5 m) and in a 

crawling position close to the floor (0.3 m).  Gas concentrations were recorded for O2, CO, 

and CO2, but notably not for HCN. 
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These experiments were designed to compare the effects of differing ventilation methods 

and great emphasis was placed on ensuring that pre-ignition conditions were close to 

identical for each test.  Identical pieces of furniture were burned with their position being 

reproduced for each test.  Ignition was in the same location and ventilation was controlled 

[73].  Whilst different ventilation methods were used from 8 min after ignition onwards, 

initial fire development was repeatable for five of the seven single storey tests.  With the 

two-storey tests, initial fire development was also reproducible in six of the eight tests. 

 

1.8.6 Tenability Analysis from the Kerber Study 
 
Tenability was measured at heights of 0.3 m and 1.5 m above floor level in a number of 

rooms for both heat and toxic gases and the endpoint of both 0.3×FED and 1.0×FED were 

calculated to consider both the healthy adult population and some of the more vulnerable 

human subpopulations. 

 

The results of the experiments were averaged across the number of experiments for both 

single and two-storey accommodation.  They clearly showed that, in the fire compartment, 

exposure to heat was a greater threat than to toxic gas.  However, there was insufficient 

data from those rooms, which were remote from the fire, to draw any conclusions. 

 

A key conclusion from this study was that those who are in the fire compartment or not 

protected by a closed door were likely receive a fatal dose of heat/smoke prior to arrival of 

the fire department.  However, there is also a likelihood that where persons were more 

remote from the fire, had the protection of a door and/or were lying at floor level, they 

would not have suffered fatal exposure to either heat or smoke and it is possible that prompt 

action from a firefighting crew would save their lives.  
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1.8.7 CO:CO2 Yield Ratio 
 
The combustion reaction and the chemical yields of CO and CO2 are dependent on the 

availability of O2 and this can be affected by a number of factors (not exhaustive): - 

 Orientation of the fuel 

 Amount of ventilation 

 Air flows near the fire 

 Heat output of the fire 

 

Gann reviewed a number of published articles considering the ratios of various species in 

smoke [74].  For well ventilated fires, CO:CO2 ratios are in the region of 0.02-0.10, in fires 

with limited-ventilation, this ratio increases to 0.15-0.30.  During an analysis he conducted, 

using a Zone Model, he chose the CO:CO2 ratio to be set at a constant 0.30. 

 

For moderately vitiated combustion, PD 7974-6 indicates that a reasonable CO:CO2 ratio 

should be around 0.10 [42].  It should also be recognised that CO can further react with O2 

in the plume producing CO2, where the conditions for reaction are satisfied (typically 

additional oxygen and temperatures above 625 °C) [75].  Research suggests that the ratio 

in the plume will change, the further it travels from the fire source [76].  The plume 

becomes diluted with clean air thus introducing more O2 and where the plume contains 

adequate energy, the CO will further react to yield CO2 thus reducing the ratio. 

 

The Su study does not discuss yield ratios [69], however analysis of the data given within 

the report and reproduced in Appendix D shows that, where there is reasonable ventilation, 

the ratio of CO:CO2 is consistently in the order of 0.20-0.25 and where the fire is vitiated 

the ratio rises to approximately 0.50 [69].  The Purser study does not discuss this either and 

again approximations of 0.12-0.15 are taken from the data given [23].  
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1.8.8 Summary of the Conclusions Drawn from the Large-Scale Tests 
 
A number of conclusions can be drawn as a result of comparing these three studies with 

one another.  These conclusions are given below: - 

 
1. The effect of a closed door – where two bedrooms are compared, one with its door open 

and one with the door closed, the difference can be considerable.  Closing a door (a typical 

domestic door not a fire door) can considerably reduce the amount of smoke and gas 

transferred and this can increase the tenable duration from less than 7 min with an open 

door to more than 20 min when the door is closed. 

2. Delays in smoke detection with a closed door – where the door of the fire compartment 

is closed, this can lead to an extended time to detection where the detector is located outside 

of that room.  These experiments agree that whilst the time to detection is increased, the 

amount of time available for escape becomes significantly greater and therefore more than 

compensates for the delay in detector response. 

3. Tenability where heat is compared to asphyxiation from CO only – where the occupant 

of a domestic building is located either within the fire compartment or close to it, there is 

a likelihood that incapacitation will result from exposure to either heat or asphyxiant gas at 

around the same time.  Where the occupant is located more remotely from the fire, the 

likelihood is that incapacitation from exposure to asphyxiant gases will occur first, 

however, it is probable that temperatures will also become sufficient to incapacitate. 

4. Tenability where heat is compared to asphyxiation from the combined effects of CO 

and HCN – in experiments where both of the two main toxic gases are considered, a loss 

of consciousness due to smoke inhalation occurs prior to that from heat exposure both 

within the fire compartment and in other locations remote from it. 

5. Other effects occurring prior to incapacitation – it is recognised that both visual 

obscuration and soreness to the eyes and respiratory tract will occur prior to incapacitation, 

as a result of exposure to smoke.  Both of these effects are unlikely to cause a loss of 

consciousness to an exposed occupant although it may impact upon their decision to 

evacuate the building or seek refuge.
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Chapter 2 - Statistical Analysis of Fire Deaths & Injuries 
 
An initial statistical analysis was carried out in Section 1.7 and showed that people living 

in GB are 4 times more likely to be injured or killed as a result of domestic fire, compared 

with fires in other buildings or outdoors.  It was also demonstrated that as many as 48% of 

all fire fatalities occur as a result smoke inhalation alone, with 30% attributed to burns and 

a further 22% resulting from a combination of smoke inhalation and burns. 

 

Several attempts have been made to identify a typical risk profile for those who are 

vulnerable of becoming a fire fatality [77][78][79].  In this section a more detailed analysis 

is described with the aim of further informing the design of the experimental part of this 

project.  This analysis will delve deeper into the national statistical reports produced by 

DCLG and will also look at raw data (where available from DCLG and WMFS) to focus 

on the identification of those factors which contribute towards fatalities and injuries. 
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2.1 Further Analysis of DCLG Published Data 
 

2.1.1 Location 
 
Figure 11 and Figure 18 showed that the majority of fatal and non-fatal fire casualties are 

exposed to fire and its effluent in their homes.  Data taken from the DCLG reports on GB 

Fire Statistics showed that, over a four year period from April 2010 to March 2014, there 

were a total of 1,465 fatal fire casualties and 42,763 non-fatal fire casualties.  This analysis 

aims to confirm the main locations where these injuries and fatalities occurred. 

 

 
Figure 23 – Fatal casualties by location (Apr-09 to Mar-14) 
 

Of the 1,465 fire fatalities, some 77% of these occur in the home, with 10% occurring in 

road vehicles, 7% outdoors and 6% in other non-domestic buildings. 
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Figure 24 – Non-fatal casualties by location (Apr-09 to Mar-14) 
 

Of the 42,763 non-fatal fire injuries, some 80% of these occur in the home, with 11% 

occurring in other non-domestic buildings, 5% in road vehicles and 4% occurring outdoors. 

 

In order for this project to have the greatest impact in reducing fire deaths and injuries, a 

focus will be placed upon fires which occur in domestic premises. 
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2.1.2 Motive 
 
Only those fatal (1,131) and non-fatal (34,201) casualties which occurred in dwellings are 

considered when looking at the motive.  Fires in dwellings can occur as a result of an 

accidental cause such as a carelessly discarded cigarette or an electrical fault; or as a result 

of a deliberate act intended to harm persons or to damage property, for example. 

 

 
Figure 25 – Fatal and Non-fatal casualties by motive (Apr-09 to Mar-14) 
 

The vast majority of fatal casualties (84%) and non-fatal casualties (88%) occur in fires 

which are considered to have been caused by accident.  This information is well recognised 

by the F&RSs within GB and significant amounts of preventative and protective action are 

conducted to reduce the number and severity of ADFs. 
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2.1.3 Room of Fire Location 
 
Only those fatal (952) and non-fatal (29,951) casualties which occurred in ADFs are 

considered when looking at the location of the fire.  This section identifies the room where 

the fire started, when it lead to human fatalities and injuries.  The casualty may have been 

within the fire compartment or may have been located somewhere else within the property, 

this analysis does not refer to the location of the casualty but to the room of fire origin only. 

 

DCLG data identifies the type of room/compartment in which the fire starts and gives 25 

different options.  Within this analysis, certain room types have been grouped together for 

simplification.  The bedroom, living and dining rooms have been grouped together on the 

basis that they all contain furniture and furnishings.  Halls and stairs are grouped together 

as are the remaining 16 options, which are grouped as ‘Others’. 

 

  
Figure 26 – Fatal casualties by fire location (Apr-09 to Mar-14) 
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ADF fatalities primarily occur as a result of fires in bedrooms, living and dining rooms, 

with these rooms accounting for 71% of fatalities.  Some 18% of fatalities occur from fires 

in kitchens with the remaining 11% occurring from fires elsewhere within the house. 

 

 
Figure 27 – Non-fatal casualties by fire location (Apr-09 to Mar-14) 
 

Figure 27 shows that fire injuries are most likely to occur as a result of a fire in the kitchen 

with this room accounting for 60% of injuries.  Fires in the bedroom, living and dining 

rooms are the cause of 28% of injuries with the remaining 12% of injuries occurring as a 

result of fires elsewhere within the home.  Figure 28 looks at fire fatality rates. 
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Figure 28 – Fatality rates by fire location (Apr-09 to Mar-14) 
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Over the four year period, there were more than 90 thousand kitchen fires, which is 

approximately 3.4 times more than the almost 27 thousand occurring in bedroom, living 

and dining rooms combined.  However, 678 fatalities occurred as a result of fires in 

bedroom, living and dining rooms which is approximately 4 times more than the 171 

occurring as a result of fires in kitchens. 

 

In summary, whilst there are significantly more fires starting in kitchens than in bedroom, 

living and dining rooms combined, the rate of fatalities for the latter is some 13.4 times 

greater per incidence of fire at 25.2 fatalities per 1,000 fires. 

 

The rate of injuries by fire location are detailed in Figure 29.  The number of fires is listed 

above however, 18,052 injuries occurred as a result of fires in the kitchen compared with 

8,382 occurring from fires in bedroom, living and dining rooms.  By stark contrast, the 

likelihood of being injured as a result of a fire in a bedroom, living or dining room is only 

1.6 times greater than being injured as a result of a kitchen fire. 

 

People receive injuries as a result of fires in bedroom, living and dining rooms at a rate of 

312 injuries per 1,000 fires and at a rate of 199 injuries per 1,000 fires as a result of kitchen 

fires. 
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Figure 29 – Injury rates by fire location (Apr-09 to Mar-14) 
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2.2 Analysis of WMFS Raw Data 
 
Having determined that fires in Bedroom, Living and Dining (BLD) rooms are 13.4 times 

more likely to cause a human fatality than a fire in a kitchen, further analysis is then 

required to establish the reason(s) behind this.  The DCLG annual statistical reports do not 

provide this level of detail, so in order to look deeper into the statistical data, there is a 

requirement for access to raw data.  Raw data has been accessed from WMFS and it will 

be analysed within this section of the thesis.  National raw data has also been obtained from 

DCLG and will be considered in Section 2.3. 

 

WMFS raw data covers a 6-year period from April 2009 to March 2015 inclusive, during 

this timeframe there were 131 fire fatalities and 3,714 fire injuries which are being 

considered.  Of all the fire fatalities and injuries in the West Midlands over this period, only 

those which occurred as a result of an ADF, where the death/injury was fire related are 

being considered; this includes some 67 fatalities and 2,569 injuries.  Whilst this data 

provides some insight into the factors contributing towards fire deaths and injuries, the size 

of the data set is relatively small in statistical terms, particularly with respect to fatalities. 

 

The heat produced during combustion is not too dissimilar from one fire to the next within 

a typical dwelling, however the chemical constituency of the smoke can differ quite 

significantly where different fuels are involved.  Remembering that up to 70% of fire deaths 

are contributed towards by smoke inhalation, the main objective within this part of the 

analysis is to identify what fuel was mainly responsible for the production of smoke.  This 

data is specifically recorded by a fire officer following an incident and is requested by 

Question 8.7 of the IRS system as a Mandatory input [56]. 
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2.2.1 Item Mainly Responsible (Fatalities) 
 
An analysis of the raw data from within WMFS is given in Table 8 and shows that more 

than 70% of the 67 fatalities occurred as a result of a fire where the item mainly responsible 

for the spread of fire sits within either the “Furniture/Furnishings” or “Clothing/Textiles” 

groupings.  These two groupings typically include those fuels which are synthetic based, 

such as foams, bedding, carpets and textiles, and typically have a chemical make-up which 

is capable of producing smoke containing a higher level of toxic chemical species. 

 

With the frequency with which kitchen fires occur, the food grouping is the third highest 

in terms of WMFS fatalities over the period.  Although, with the prevalence of kitchen 

fires, this fire type only contributes towards less than 10% of the fire fatalities. 

 

Grouping 
IRS 
Code

IRS Item 
Number 

of 
fatalities 

Total  %age 
Cum. 
%age 

Furniture/Furnishings 

11  Bed/Mattress  12     

12 
Upholstered 
furniture 

11       

14  Floor coverings  2     

37 
Other/Unspecified 

furnishings 
3  28  41.8%  41.8% 

Clothing/Textiles 

9  Bedding  5     

10  Clothing  14     

36  Other textiles  1  20  29.9%  71.6% 

Food 
6  Cooking oil or fat  5     

7  Other  1  6  9.0%  80.6% 

Rubbish/Waste/Recycling  30 
Rubbish/Waste 

material 
4  4  6.0%  86.6% 

Structural/Fixtures/Fittings 
‐ Internal 

34  Internal fittings  2     

42  Wiring insulation  2  4  6.0%  92.5% 

Other  99  Other  4  4  6.0%  98.5% 

Explosives, gas, chemicals  24  Gases  1  1  1.5%  100.0%
    Total  67  67  100.0%  100.0%

Table 8 – Item mainly responsible in WMFS 09-15 (fatalities) 
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Having established that fires from the “Furniture/Furnishings” and “Clothing/Textiles” 

groupings are the cause of more than 70% of the fatalities, a final cross reference check is 

required to ensure that fires in the BLD rooms typically involve fuels from within these 

categories and that kitchen fires do not. 

 

Table 9 is derived from a pivot table which checks this.  In bedroom/bedsitting room fires, 

all 16 of the fatalities involved fuels contained within these two groupings.  With living 

room fires, 25 of the 27 fatalities also involved these fuels and no fatalities were caused as 

a result of fires in dining rooms.  So in total, 41 of the 43 fires in BLD rooms which caused 

a fatality were as a result of fuels packages fitting into these two groupings. 

 

The two fuel types which caused the largest number of fatalities were Bed/Mattress and 

Upholstered Furniture. 
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Fire Room 
Item Mainly Responsible for Fire Spread Fatal Casualty 
Airing / Drying cupboard 2 

Clothing 2 
Bedroom 15 

Any other furnishings or appliances 1 
Bed / Mattress 11 
Bedding 2 
Floor coverings (incl. in vehicle) (carpet, mat, rug etc.) 1 

Bedsitting room 1 
Bedding 1 

Corridor / Hall 2 
Clothing 1 
Rubbish/Waste material 1 

Kitchen 17 
Any other food 1 
Clothing 3 
Cooking oil or fat (incl. vapours) 5 
Gases 1 
Internal structures / fittings (incl. in vehicle) 2 
Other 1 
Rubbish/Waste material 3 
Wiring insulation (e.g. electrical wire) 1 

Living room 27 
Any other furnishings or appliances 2 
Bed / Mattress 1 
Bedding 2 
Clothing 7 
Floor coverings (incl. in vehicle) (carpet, mat, rug etc.) 1 
Other 2 
Other textiles 1 
Upholstered furniture (incl. vehicle seats) 11 

Open plan area 1 
Human Skin 1 

Other - Inside building 1 
Clothing 1 

Utility room 1 
Wiring insulation (e.g. electrical wire) 1 

Grand Total 67 

Table 9 – Fire room/item mainly responsible in WMFS 09-15 (fatalities) 
 

For fires in kitchens, only 3 of the 17 fatalities were as a result of fuels fitting into the 

“Furniture/Furnishings” and “Clothing/Textiles” groupings.  Only 6 of the 17 fatalities 

resulting from fires in kitchens involved fuels which sit within the “Food” grouping. 
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2.2.2 Item Mainly Responsible (Injuries) 
 
Whilst Figure 27 suggests that as many as 60% of all fire injuries occur as a result of fires 

in kitchens, Table 10 shows that in the West Midlands, around 42% of all fire injuries occur 

as a result of fuels which sit in the “Food” grouping.  Figure 27 also shows that 28% of all 

fire injuries occur as a result of fires in BLD rooms and Table 10 shows that in the West 

Midlands, around 27% of fire injuries occur as a result of fuels which sit in the 

“Furniture/Furnishings” and “Clothing/Textiles” groupings. 

 

This analysis identifies a reasonable agreement between the numbers of injuries as a result 

of BLD room fires and the number of injuries as a result of fuels which sit in the 

“Furniture/Furnishings” and “Clothing/Textiles” groupings.  It also suggests that a 

significant number of the fires which occur in kitchens do not involve fuels which are 

“Food” based; again a cross referencing analysis has been conducted and is presented in 

Table 11.  In order to simplify this table, only the data for the BLD rooms and the kitchen 

are displayed, the data from all other rooms is omitted from the table. 

 

Further analysis of Table 11 shows that, where fire injuries occurred, 68% of fires in BLD 

rooms involved fuels which sit in the “Furniture/Furnishings” and “Clothing/Textiles” 

groupings.  Furthermore, where fire injuries occurred, 67% of fires in kitchens involved 

fuels which sit in the “Food” grouping. 
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Grouping 
IRS 
Code

IRS Item 
Number 
of injuries 

Total  %age 
Cum. 
%age 

Food 
6  Cooking oil or fat  686     

7  Other  403  1,089  42.4%  42.4% 

Furniture/Furnishings 

11  Bed/Mattress  123     

12 
Upholstered 
furniture 

86       

13  Other furniture  56     

14  Floor coverings  45     

15  Window coverings  27     

37 
Other/Unspecified 

furnishings 
58  395  15.4%  57.8% 

Clothing/Textiles 

9  Bedding  65     

10  Clothing  134     

36  Other textiles  97  296  11.5%  69.3% 

Structural/Fixtures/Fittings 
‐ Internal 

34  Internal fittings  130     

38  Internal Other  10     

42  Wiring insulation  168  308  12.0%  81.3% 

Other  99  Other  191  191  7.4%  88.7% 

Paper/Cardboard 
43  Paper/Cardboard  71     

44  Other  5  76  3.0%  91.7% 

Foam, rubber, plastic 

19 
Foam ‐ raw 
material only 

4       

20 
Rubber ‐ raw 
material only 

1       

21 
Plastic ‐ raw 
material only 

64  69  2.7%  94.4% 

Explosives, gas, chemicals 

24  Gases  28     

25 
Petrol/Oil 
products 

16       

26 
Paint, varnish, 
resins, creosote 

1  45  1.8%  96.1% 

Rubbish/Waste/Recycling 
30 

Rubbish/Waste 
material 

29       

31 
Recycling ‐ paper, 

cardboard 
8  37  1.4%  97.5% 

Wood  40  Other wooden  35  35  1.4%  98.9% 

Structural/Fixtures/Fittings 
‐ External 

17  Roof  8     

18  External fittings  16  24  0.9%  99.8% 

Not Known  0  Not known  4  4  0.2%  100.0%
    Total  2,569  2,569  100.0%  100.0%

Table 10 – Item mainly responsible in WMFS 09-15 (injuries) 
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Fire Room  
Item Mainly Responsible for Fire Spread Non-fatal Casualty 
Bedroom 343 

Any other furnishings or appliances 8 
Any other furniture 17 
Bed / Mattress 111 
Bedding 51 
Clothing 33 
Floor coverings (incl. in vehicle) (carpet, mat, rug etc.) 17 
Foam - raw material only 2 
Gases 2 
Human Hair 1 
Human Skin 1 
Internal structures / fittings (incl. in vehicle) 7 
Other 20 
Other Paper/Cardboard 2 
Other Structural / Fixtures / Fittings - Internal 2 
Other textiles 18 
Other wooden 2 
Paper/Cardboard 18 
Petrol / Oil products (incl. vapours) 1 
Plastic - raw material only 4 
Recycling - paper, cardboard 1 
Rubbish/Waste material 1 
Upholstered furniture (incl. vehicle seats) 1 
Window coverings 10 
Wiring insulation (e.g. electrical wire) 13 

Bedsitting room 29 
Any other food 4 
Bed / Mattress 5 
Bedding 2 
Clothing 4 
Cooking oil or fat (incl. vapours) 2 
Floor coverings (incl. in vehicle) (carpet, mat, rug etc.) 1 
Gases 1 
Internal structures / fittings (incl. in vehicle) 1 
Other wooden 1 
Paper/Cardboard 2 
Rubbish/Waste material 1 
Upholstered furniture (incl. vehicle seats) 4 
Wiring insulation (e.g. electrical wire) 1 

Dining room 12 
Clothing 2 
Other textiles 1 
Other wooden 3 
Paper/Cardboard 1 
Upholstered furniture (incl. vehicle seats) 1 
Window coverings 1 
Wiring insulation (e.g. electrical wire) 3 

Kitchen 1609 
Animal products 2 
Any other food 396 
Any other furnishings or appliances 32 
Any other furniture 12 
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Bedding 5 
Chemicals in raw state 2 
Clothing 25 
Cooking oil or fat (incl. vapours) 681 
Floor coverings (incl. in vehicle) (carpet, mat, rug etc.) 2 
Gases 21 
Human Hair 1 
Human Skin 7 
Internal structures / fittings (incl. in vehicle) 76 
Not known 1 
Other 106 
Other Paper/Cardboard 1 
Other Structural / Fixtures / Fittings - Internal 6 
Other textiles 53 
Other wooden 9 
Paper/Cardboard 29 
Petrol / Oil products (incl. vapours) 5 
Plastic - raw material only 42 
Recycling - paper, cardboard 3 
Rubber - raw material only 1 
Rubbish/Waste material 11 
Upholstered furniture (incl. vehicle seats) 1 
Window coverings 4 
Wiring insulation (e.g. electrical wire) 75 

Living room 302 
Any other furnishings or appliances 12 
Any other furniture 22 
Bed / Mattress 5 
Bedding 5 
Clothing 36 
External structures / fittings (incl. vehicle) 2 
Floor coverings (incl. in vehicle) (carpet, mat, rug etc.) 19 
Foam - raw material only 2 
Gases 4 
Human Hair 1 
Human Skin 4 
Internal structures / fittings (incl. in vehicle) 16 
Not known 3 
Other 21 
Other Paper/Cardboard 1 
Other textiles 11 
Other Vegetation 1 
Other wooden 5 
Paper/Cardboard 12 
Petrol / Oil products (incl. vapours) 1 
Plastic - raw material only 10 
Recycling - paper, cardboard 1 
Rubbish/Waste material 7 
Upholstered furniture (incl. vehicle seats) 78 
Window coverings 10 
Wiring insulation (e.g. electrical wire) 13 

Grand Total 2569 

Table 11 – Fire room/item mainly responsible in WMFS 09-15 (injuries) 
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2.3 Analysis of DCLG Raw Data 
 
In addition to obtaining raw data from WMFS, the author has also been able to gather raw 

data from the DCLG.  This data is not generally available however, it can be made available 

to data analysts from the GB F&RSs on request.  Not all of the raw data is available, for 

example, all data referring to attendance/intervention times at specific incidents is not 

provided. 

 

Data from all GB F&RSs is provided although it is only available for three financial years 

(2009/10, 2010/11 and 2011/12).  Filtering the data shows that over the 3-year period there 

were 566 fatalities and 17,642 injuries which occurred as a result of ADFs where the 

fatality/injury was fire related.  This data set is much more statistically valid in terms of the 

number of fatalities/injuries, when compared with the WMFS data, particularly in respect 

to the number of fire fatalities. 

 

On the basis of the raw data that is available, the following factors and trends have been 

analysed in greater depth: - 

 
 The time at which the incident occurred 

 The presence, location and failings of a fire alarm system 

 How the fire started and spread, its location and size 

 Any human factors which contributed towards ignition or failure to escape 

 Victim details such as age, whether rescued and circumstances of fatality/injury 
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The detailed analysis is given in the following subsections and considers both fatalities and 

injuries for ADFs only and makes a comparison between the two. 

 

Within Sections 2.3.1 to 2.3.5 the number of fatalities/injuries is considered in respect of a 

single factor, for example whether there was a smoke alarm present.  However, it is widely 

recognised that serious events such as fire fatalities generally occur when a number of 

factors are all contributory. 

 

In Section 2.3.6 a series of combined analyses are conducted to establish any typical 

combinations.  For example, is the time of day significant to the location of the fire, i.e. do 

kitchen fires occur around meal times? 
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2.3.1 Time Analysis 
 
The data provided by DCLG enables the author to establish the time of the incident and the 

month in which the incident occurred.  The data shown in Figure 30 demonstrates that fire 

injuries and fatalities occur with a greater frequency throughout the winter months, 

probably as a result of the fact that people spend more time indoors both living and cooking 

during this period, and the fact that people are more likely to heat and light their homes 

during the winter. 

 

There also seems to be a peak in both fatalities and injuries in the month of April however 

this is unexplained at this time.  It may be that there is a link with this month traditionally 

being a holiday period. 

 

 
Figure 30 – Occurrence of fatalities and injuries DCLG 09-12 (by month) 
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Figure 31 – Occurrence of fatalities and injuries DCLG 09-12 (by hour) 
 

The time of day when people are injured or killed in ADFs is shown in Figure 31.  The 

curve for fatalities does not show any particular trend other than a spike between 15-16pm.  

A slightly higher than average number of fire fatalities occur between 20pm and 2am.  The 

curve for fire injuries in Figure 31 follows a more traditional shape with a trough between 

1am and 11am and then an increased number of injuries from 12pm through to 00am the 

following day, with a peak at around 17-19pm. 
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2.3.2 Fire Alarm Analysis 
 
This section considers the impact of having a fire alarm system within the property.  It 

looks at the presence of fire alarms where fatalities and injuries have occurred, it establishes 

the location of the detector, whether the system operated and if it raised the alarm. 

 

Table 12 shows the presence of a fire alarm system and it can be seen that 62% of fatalities 

and 73% of injuries occurred within a property with a smoke alarm.  The presence of a 

smoke alarm is greater at those incidents where an injury occurred and it could be argued 

that the presence of the smoke alarm system is likely to have helped prevent a fatality at 

these incidents. 

 

Alarm 
Present 

Fatality  Injury 

Count  Percentage  Count  Percentage 

Yes  352  62.2%  12,946  73.4% 

No  180  31.8%  4,481  25.4% 

Don't Know  34  6.0%  215  1.2% 

Grand Total  566  100.0%  17,642  100.0% 

Table 12 – Presence of a fire alarm system DCLG 09-12 
 

Table 13 shows the location of the fire alarm system where present.  Traditionally fires are 

more likely to occur in habitable rooms and smoke detectors are located in rooms used for 

circulation such as hallways and landings.  This leads to a low number of alarms being 

located in the room of fire origin, representing some 12-14% for injuries and fatalities. 

 

Alarm Location 

Fatality  Injury 

Count  Percentage  Count  Percentage 

Room of Origin  50  14.2%  1,537  11.9% 

Same Floor as Fire  257  73.0%  10,080  77.9% 

Different Floor from Fire  45  12.8%  1,329  10.3% 

Grand Total  352  100.0%  12,946  100.0% 

Table 13 – Alarm system location DCLG 09-12 
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Interestingly, a high number of alarms are located on the same floor as the fire as would be 

the recommendation of local F&RSs. 

 

Of the 566 fatalities, there were 352 (62%) occasions where an alarm was present and only 

228 (40%) times where the alarm actuated; of the 17,642 injuries, there were 12,946 (73%) 

occasions where an alarm was present and only 9,794 (56%) times where it actuated.  For 

incidents where fatalities and injuries occurred the presence of a working smoke alarm was 

40% and 56% respectively, with a greater coverage where injuries have occurred.  Table 

14 also identifies where the occupants are alerted and are not alerted when the alarm 

operates. 

 

Alarm Operated 

Fatality  Injury 

Count  Percentage  Count  Percentage 

Yes and raised alarm  135  38.4%  7,602  58.7% 

Yes, but didn't raise alarm  93  26.4%  2,192  16.9% 

No  124  35.2%  3,152  24.3% 

Grand Total  352  100.0%  12,946  100.0% 

Table 14 – Alarm system operated DCLG 09-12 
 

Coverage then is much lower than the 88% of working smoke alarm ownership discussed 

in Section 1.7.5 [6].  This analysis suggests that, withstanding the fact that people are much 

more likely to own a smoke alarm now than they were 10-15 years ago, those groups within 

the community with a greater tendency to have a fire are less likely to have a working 

smoke alarm.  In order to remedy this Fire Authorities continue to work to identify and 

target these more vulnerable groups within the community. 
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Reason for Not Operating 

Fatality  Injury 

Count  Percentage  Count  Percentage 

Missing/Defective Battery  48  38.7%  1,004  31.9% 

Fire Remote from Detector  16  12.9%  963  30.6% 

Detector Removed  12  9.7%  220  7.0% 

Fault with Alarm System  7  5.6%  411  13.0% 

Other/Not Known  41  33.1%  554  17.6% 

Grand Total  124  100.0%  3,152  100.0% 

Table 15 – Reason that alarm system did not operate DCLG 09-12 
 

Table 15 shows that the main reason for the alarm system not operating during these 

incidents was as a result of a missing or defective battery, for both fatalities and injuries.  

Completing a regular test of the smoke detectors would have identified these faults and 

some of the others in the list above. 

 

Reason for Not Raising the Alarm 

Fatality  Injury 

Count  Percentage  Count  Percentage 

Alarm raised before system operated  11  11.8%  1,283  58.5% 

No Person in Earshot  11  11.8%  173  7.9% 

Occupants did not Respond  36  38.7%  512  23.4% 

Other/Not Known  35  37.6%  224  10.2% 

Grand Total  93  100.0%  2,192  100.0% 

Table 16 – Reason that the alarm system did not raise the alarm DCLG 09-12 
 

For fire fatalities, Table 16 shows that the occupants do not respond to an actuating alarm 

39% of the time.  With fire injuries, it can be seen that the occupant becomes aware of the 

fire prior to the alarm actuating during 59% of incidents.  This statistic is likely to have 

contributed towards the fact that these occupants were only injured during the incident and 

were not more seriously harmed. 
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2.3.3 Analysis of the Fire 
 
When considering the fire itself, the raw data provides the opportunity for analysis of the 

source of ignition, the item mainly responsible for fire spread, the fire location and the fire 

size.  This data is analysed to establish those factors which contribute towards having a 

detrimental impact upon those people exposed to the heat and smoke produced by the fire. 

 
Source of Ignition  No. of Fatalities No. of Injuries 

Smoking Related  224  2,118 

Cooking Appliance  70  9,213 

Heating Equipment  54  1,009 

Matches/Candles  50  1,291 

Other Domestic Appliance  38  1,485 

Naked Flame  26  274 

Electricity Supply  21  996 

Electric Lighting  5  269 

Other/Not Known  78  987 

Grand Total  566  17,642 

Table 17 – Ignition source DCLG 09-12 
 

The main source of ignition in fatal fires is related to the use of smoking materials and this 

is the cause of 40% of all ADF fatalities.  In comparison, the main source of ignition for 

fire injuries is in relation to cooking appliances where these cause 52% of injuries.  This 

data supports the analysis given in Section 2.1.3, where kitchen fires contribute towards 

60% of dwelling fire injuries. 
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Table 18 shows the item mainly responsible for the spread of fire and it is therefore 

reasonable to assume that this is the item mainly responsible for the production of smoke 

in the early stages of fire development.  In broad agreement with the analysis in Section 

2.2, it shows that “Furniture/Furnishings” and “Clothing/Textiles” account for almost two 

thirds of fire fatalities, where as “Food” is the major contributor towards fire injuries. 

 

Table 18 also contains the data for WMFS statistics from April 2009 to March 2015 

(including 67 fatalities and 2,569 injuries resulting from ADFs) and there is reasonable 

agreement between the two sets of data. 

 

Item Mainly Responsible 

DCLG Data  WMFS Data 

No. of Fatalities
(%) 

No. of Injuries 
(%) 

No. of Fatalities 
(%) 

No. of Injuries 
(%) 

Furniture/Furnishings  41.7  15.5  41.8  15.4 

Clothing/Textiles  21.9  12.6  29.8  11.5 

Structure/Fittings ‐ Internal  6.2  9.5  6.0  12.0 

Food  3.7  34.3  8.9  42.4 

Foam/Rubber/Plastic  3.0  5.8  0.0  2.7 

Explosives/Gas/Chemicals  2.8  2.1  1.5  1.8 

Rubbish/Waste/Recycling  2.1  2.2  6.0  1.4 

Paper/Cardboard  1.4  2.8  0.0  3.0 

Other/Not Known  17.1  15.2  6.0  9.8 

Grand Total  100.0  100.0  100.0  100.0 

Table 18 – Item mainly responsible for spread of fire DCLG 09-12/WMFS 09-15 
 

Figure 32 shows that 71% of fatalities arise as a result of a fire in a bedroom/living/dining 

room (64% for WMFS) and 19% are from kitchen fires (25% for WMFS).  They also show 

that 59% of injuries result from kitchen fires (63% for WMFS) and 29% result from a fire 

in a bedroom/living/dining room (27% for WMFS). 
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Figure 32 – Numbers of fatalities and injuries DCLG 09-12 (by fire location) 
 

To some extent these data show the same trends as that in Section 2.1.3 and it is again in 

reasonable agreement with the figures from WMFS only.  The West Midlands appears to 

have slightly greater numbers of fatalities and injuries from kitchen fires and slightly lower 

numbers from bedroom/living/dining room fires combined than the national average, but 

this may not be statistically significant. 

 

It is also possible to analyse the number of fatalities and injuries against the size of the fire, 

or at least by the area of damage that it causes.  Fire officers record two measurements, the 

first being the extent of damage caused by the fire and the second being the total extent of 

damage caused by fire, water, heat and smoke, based on floor area. 
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It would be reasonable to imagine that larger fires create a greater quantity of heat and 

smoke and therefore present an increased risk to the occupants of a building.  This is borne 

out in Table 19, where it can be seen that 68% of all fatalities occur where fire damage is 

greater than 5m2 and that 72% of all fire injuries occur where fire damage is less than 5m2. 

 

Fire Damage Area 
(m2) 

Fatalities  Injuries 

Number  Cum. %age  Number  Cum. %age 

None  22  3.9  2,540  14.4 

Up to 5  160  32.2  10,128  71.8 

6 ‐ 10  108  51.2  2,030  83.3 

11 ‐ 20  102  69.3  1,377  91.1 

21 ‐ 50  89  85.0  1,030  97.0 

51 ‐ 100  49  93.6  371  99.1 

101 ‐ 200  21  97.3  101  99.6 

201 ‐ 500  8  98.8  38  99.8 

501 ‐ 1,000  6  99.8  21  100.0 

1,001 ‐ 2,000  0  99.8  3  100.0 

2,001 ‐ 5,000  1  100.0  3  100.0 

Grand Total  566  100.0  17,642  100.0 

Table 19 – Area of damage caused by fire DCLG 09-12 
 

Figure 33 shows this information in graphical form with a propensity of red (injuries) below 

5m2 and a propensity of blue (fatalities) where the fire damage is greater than 5m2. 
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Figure 33 – Horizontal area damaged by fire DCLG 09-12 
 

This is further reinforced by the total amount of damage during these fires as seen in Table 

20, where it can be seen that 71% of all fatalities occur where the total damage is greater 

than 20m2 and that 61% of all fire injuries occur where the total damage is less than 20m2. 

 

Total Damage Area 
(m2) 

Fatalities  Injuries 

Number  Cum. (%)  Number  Cum. (%) 

None  1  0.2  646  3.7 

Up to 5  45  8.1  5,200  33.1 

6 ‐ 10  37  14.7  2,211  45.7 

11 ‐ 20  83  29.3  2,665  60.8 

21 ‐ 50  165  58.5  3,516  80.7 

51 ‐ 100  139  83.0  2,327  93.9 

101 ‐ 200  63  94.2  738  98.1 

201 ‐ 500  21  97.9  221  99.3 

501 ‐ 1,000  10  99.6  74  99.8 

1,001 ‐ 2,000  1  99.8  12  99.8 

2,001 ‐ 5,000  0  99.8  15  99.9 

5,001 ‐ 10,000  1  100.0  17  100.0 

Grand Total  566  100.0  17,642  100.0 

Table 20 – Total area of damage caused DCLG 09-12 
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Again, this is represented graphically in Figure 34 and again the red (injuries) are shifted 

to the left and the blue (fatalities) are shifted to the right.  Whilst it is recognised that the 

size of the fire is an important factor when considering the likely outcome for those exposed 

in these situations, it is worth noting that fatalities do still occur where the fire size is 

relatively small and that people do survive large fire situations. 

 

 
Figure 34 – Total horizontal area damaged DCLG 09-12 
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2.3.4 Analysis of the Human Factors 
 
Raw data from DCLG allows for the analysis of those human factors which contribute 

towards a fire death or injury and also to establish if it was believed that drugs/alcohol 

played a part.  According to Table 21 the top three human factors contributing towards fire 

fatalities are Falling Asleep (22%), Other Medical Condition (12%) and Disabled (8%) 

with the vast majority of cases having no human factors or that this information was not 

known. 

 

The top three human factors contributing towards fire injuries are Distraction (21%), 

Falling Asleep (20%) and Other Medical Condition (6%) and again a significant number 

have no contributing factor or are unknown. 

 
Human Factors  No. of Fatalities  No. of Injuries 

Falling asleep/Asleep  122 (22%)  3,566 (20%) 

Other medical condition/Illness  68 (12%)  1,036 (6%) 

Disabled  45 (8%)  258 (1%) 

Excessive and dangerous storage  13 (2%)  200 (1%) 

Temporary lack of physical mobility  13 (2%)  106 (1%) 

Distraction  12 (2%)  3,654 (21%) 

None  92 (16%)  6,119 (35%) 

Other/Not Known  201 (36%)  2,703 (15%) 

Grand Total  566  17,642 

Table 21 – Human factors contributing towards fatalities and injuries DCLG 09-12 
 

Being under the influence of alcohol and/or drugs contributes towards 24% of fatalities and 

19% of injuries, this information is also unknown in a significant number of circumstances. 

 
Under Influence (Drugs or Alcohol)  No. of Fatalities  No. of Injuries 

No  237  12,164 

Yes  137  3,286 

Don't know  192  2,192 

Grand Total  566  17,642 

Table 22 – The influence of drugs or alcohol DCLG 09-12 
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2.3.5 Victim Analysis 
 
The IRS system gathers a significant amount of data about the people who are killed and 

injured in those incidents attended by the F&RS.  Unfortunately, only a limited amount of 

this data has been provided by DCLG and that data is presented within this section of the 

thesis.  It includes information about the age of the victim, the cause of the fatality and the 

extent of any injury. 

 

Victim Age 
Bands 

No. of Fatalities  No. of Injuries 

Age of UK PopulationNumber  Percentage  Number  Percentage 

0 to 15  42  7.4%  1,908  10.8%  19.0% 

16 to 64  210  37.1%  11,109  63.0%  64.1% 

65 plus  314  55.5%  4,625  26.2%  16.9% 

Grand Total  566  100.0%  17,642  100.0%  100.0% 

Table 23 – Age of victim DCLG 09-12 
 

The actual age of each victim is recorded by the F&RS however the DCLG converts this 

information into age bands, presumably for data protection purposes.  It is widely 

recognised that a disproportionate number of elderly people die each year in fires and this 

information is again borne out within this data [53].  Some 56% of all fire fatalities occur 

with people who are aged 65 or older, whereas the population of the UK who are this old 

is only 17% [80].  The number of injuries more closely represents the population of the 

UK, with a slight move towards the 65 and overs group being more susceptible to injury. 

 

In the West Midlands (April 09 to March 15), there have been no fatalities in the age range 

0 to 15, 48% of fatalities occurred in the band of 16 to 64 and 52% in the band 65 and over.  

WMFS statistics also identifies that males are more likely to become fatal casualties than 

females with 64% of fatalities being male. 
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The cause of fire fatalities is explored earlier in Section 1.7.9.  Table 24 and Figure 35 give 

a further comparison of the DCLG raw data figures over the 3-year period and also the 

WMFS data over a 6-year period.  All three data sets show reasonable agreement with 

smoke inhalation being responsible for around 45-50% of fatalities, a combination of burns 

and smoke giving around 20% and burns alone at around 15-20% with the remainder 

unknown. 

 

 
Figure 35 – Cause of fatality DCLG 09-12/WMFS 09-15 
 

 

Cause of Fatality 

DCLG raw data  WMFS raw data 

Number  Percentage  Number  Percentage 

Burns  123  21.7%  11  16.4% 

Burns and Smoke  108  19.1%  14  20.9% 

Smoke  264  46.6%  34  50.7% 

Other/Not known  71  12.5%  8  11.9% 

Grand Total  566  100.0%  67  100.0% 

Table 24 – Cause of fatality DCLG 09-12/WMFS 09-15 
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Obviously this suggests that both the heat and smoke produced by fires can contribute 

towards human fatalities and that the mechanism by which each of these affect the 

occupants should be further explored. 

 
Extent of Injury  No. of Injuries 

Precautionary Check  3,653 

First Aid given at Scene  6,241 

Hospitalised (Injuries appear slight)  6,659 

Hospitalised (Injuries appear serious)  1,089 

Grand Total  17,642 

Table 25 – Extent of Injury DCLG 09-12 
 

The extent to which an occupant is injured is given in Table 25 and Figure 36, this data 

shows that the vast majority of all injuries require first aid to be given at the scene of the 

incident (often in the form of oxygen therapy) or require hospitalisation for injuries which 

appear to be slight.  A significant number of casualties are given a precautionary check and 

only 6% of all injured casualties are hospitalised with what appears to be a serious injury. 

 

 
Figure 36 – Extent of injury DCLG 09-12 
  

21%

35%

38%

6%

Extent of Injury

Precautionary Check First Aid given at Scene

Hospitalised (Injuries appear slight) Hospitalised (Injuries appear serious)



R.Walker PhD Thesis  2 – Statistical Analysis 

 

 
114 

2.3.6 Combined Analysis (Time and Fire Location) 
 
Of the 566 ADF fatalities, 481 occur as a result of a fire in either a bedroom, kitchen or 

living room, some 85%.  A comparison of the fatal fires in these three locations is given in 

Figure 37 in conjunction with time of the fire.  This graph shows that a moderate peak in 

kitchen fire fatalities occurs between 9-11am, bedroom fire fatalities peak between 15-17 

pm and again between 21pm and midnight.  There is a strong peak in living room fire 

fatalities between 15-16pm (also seen in Figure 31) and also a peak in the evening between 

20pm and midnight. 

 

 
Figure 37 – Time and location of fire fatalities DCLG 09-12 
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Of the 17,642 ADF injuries 15,262 of them occur as a result of a fire in either a bedroom, 

kitchen or living room, some 87%.  A comparison of those fires causing injuries, in these 

three locations, is given in Figure 38 in conjunction with the time of the fire.  This graph 

shows that the vast majority of fire injuries occur as a result of kitchen fires and that living 

room fire injuries are above average from 17pm through to 5am the following day and 

below average for the remaining period.  Similarly, bedroom fire fatalities are above 

average from 17pm through to 3am.  For injuries resulting from kitchen fires, the peak 

appears to occur between 15pm and 21pm and this is a time where it is likely that people 

are cooking at home. 

 

 
Figure 38 – Time and location of fire injuries DCLG 09-12 
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2.4 Conclusions Drawn from the Statistical Analysis 
 
The statistical analysis conducted within Section 1.7 and Chapter 2 has primarily been 

completed to understand the factors which lead towards fire injuries and fatalities in the 

UK.  In addition, this data will help to identify those factors which should be considered 

and/or monitored within the experimental phase of this study.  A summary of the 

conclusions drawn from these analyses are given below and will be used to determine the 

nature of the fire experimentation phase: - 

 
 When considering the impact of human exposure to fire, this should be measured in respect 

of both heat exposure and smoke inhalation (Section 1.7.9) 

 The vast majority of fire fatalities and injuries occur within dwelling fires where the motive 

was accidental (Section 1.7.11 and Section 2.1.2) 

 The major rooms, within a dwelling, where fires occur that contribute towards human 

fatalities and injuries are the bedroom, living room and kitchen (Section 2.1.3) 

 Living room and bedroom fires are more prominent for fire fatalities and kitchen fires lead 

to a greater number of fire injuries (Section 2.1.3) 

 Some 70% of fire fatalities occur where the item mainly responsible for fire development 

is categorised as either “Furniture/Furnishings” or “Clothing/Textiles” and 95% of the 

fatalities occurring as a result of fires in BLD rooms involve this fuel type (Section 2.2.1) 

 Some 42% of fire injuries occur where the item mainly responsible for fire development is 

categorised as a “Food” and 67% of the injuries occurring as a result of fires in kitchens 

involve this fuel type (Section 2.2.1) 

 Working smoke alarms can improve the occupants chances of escaping safely although it 

is recognised that the people within our communities that are more likely to have a fire are 

less likely to own a working smoke alarm (Section 2.3.2) 

 The main source of ignition in fire fatalities is “Smoking Related” with 40% and with fire 

injuries it is “Cooking Appliance” with 52% (Section 2.3.3) 

 The size of the fire is critical with smaller fires more likely to lead to an injury and larger 

fires being more likely to lead to a fatality (Section 2.3.3) 
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Chapter 3 - Experimental Design 
 
An understanding of the key factors leading to human casualties from fire has been 

established within Section 1.7 and Chapter 2.  These factors and particularly those which 

are summarised in Section 2.4 have been used to design the experiments which have been 

carried out to gain further understanding of the hazards. 

 

3.1 Project Aims 
 
This section of the thesis aims to describe the design of the experiments which have been 

conducted to establish the timelines for human survivability.  It will describe each 

individual scenario and will identify how the author will attempt to ensure that the data is 

of scientific value.  It will also describe the methodologies for data gathering and will 

outline how comparisons between different experiments have been taken. 

 

Each scenario is carefully designed to give a realistic fire and to present a hazard which is 

typical of those which are faced by members of the public in the UK.  Overall the range of 

scenarios tested are believed to be representative of those of ADF. 

 

It is critical that any large-scale fire testing should be representative of a realistic scenario 

and should also be reasonably reproducible such that good comparisons can be made 

between different tests.  An assessment of the aforementioned studies by Su, Purser and 

Kerber have been considered alongside other sources of information on large-scale tests 

[81][82][83][84].  The purpose of this assessment has been to gain an increased 

understanding of large-scale experiments and fire chemistry, to inform the testing which 

has been conducted within this study. 
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3.2 Fire Scenarios Tested 
 
A series of experiments have been designed with the aim of obtaining reproducible results 

for a number of realistic, domestic fire scenarios which have the potential to cause fire 

deaths and injuries, where the building is occupied.  The objective of these experiments is 

to gather data indicating the point at which a given fire scenario is likely to render the 

occupants of a building incapacitated or dead.  The following organisations have been 

working in collaboration to run these experiments and to gather the scientific data: - 

 
 WMFS – project management, experimental design, risk assessment and safety marshal 

 UCLAN (CFHS) – gas component, thermal and mass loss data analysis and expert advice 

 SPRUE AEGIS – smoke detector actuation and smoke obscuration data analysis 

 Birmingham City Council – provision of unoccupied buildings to enable experimentation 

 
Details of the fire scenarios are summarised in Table 26.  For all of the following scenarios 

gas component, thermal analysis and smoke detector actuation data have been gathered in 

various places throughout the property both within and outside of the fire compartment.  

Mass loss data has been gathered for Scenarios 2-7 and 9-11, which are located in the 

lounge.  For scenarios 1 and 2, two experiments have been conducted to establish 

reproducibility. 
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Experiment No. Scenario Fire Location Fuel Fire Compartment Door Ventilation Open Vent Details 

1 1 Kitchen Cooking Oil Open 2m2 Front Door (full height 1m2) 
Lounge Window (full height 1m2) 

2 1 Kitchen Cooking Oil Open 2m2 Front Door (full height 1m2) 
Lounge Window (full height 1m2) 

3 2 Lounge Sofa Open 2m2 Front Door (full height 1m2) 
Kitchen Window (full height 1m2) 

4 2 Lounge Sofa Open 2m2 Front Door (full height 1m2) 
Kitchen Window (full height 1m2) 

5 3 Lounge Sofa Closed 2m2 Lounge Window (full height 2m2) 

6 3 Lounge Sofa Closed 2m2 Lounge Window (full height 2m2) 

7 4 Lounge Sofa Open 0.5m2 Lounge Window (upper 0.50m2) 

8 5 Lounge Sofa Open 0.5m2 
Lounge Window (upper 0.50m2) 

Bedroom Window (full height 1m2) 

9 6 Lounge Sofa Closed 0.5m2 Lounge Window (upper 0.50m2) 

10 7 Lounge Sofa Open 2m2 Front Door (full height 1m2) 
Bedroom Window (full height 1m2) 

11 8 Kitchen Fully furnished Open 2m2 Front Door (full height 1m2) 
Lounge Window (full height 1m2) 

12 9 Lounge Fully furnished Open 2m2 Front Door (full height 1m2) 
Kitchen Window (full height 1m2) 

13 10 Lounge Fully furnished Open 0.5m2 Lounge Window (upper 0.50m2) 

14 11 Lounge Fully furnished Closed 2m2 Lounge Window (full height 2m2) 

Table 26 – List of fire experiments 
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3.2.1 Scenario 1 
 
Experiments 1 and 2 comprise a steady state fire simulating overheated cooking oil 

contained within a pan on a stove within the kitchen (i.e. the fire compartment and other 

rooms will otherwise contain no combustible materials).  These experiments were well-

ventilated and the fire compartment door was held open to allow the products of 

combustion to travel around the remainder of the property. 

 

3.2.2 Scenario 2 
 
Experiments 3 and 4 comprise a growing fire using a single sofa as the only fuel source 

(i.e. the fire compartment and other rooms otherwise contained no combustible materials).  

These experiments were well-ventilated and the fire compartment door was held open to 

allow the products of combustion to travel around the property. 

 

3.2.3 Scenario 3 
 
Experiments 5 and 6 comprise a growing fire using a single sofa as the only fuel source.  

These experiments were comparatively under-ventilated and the fire compartment door 

remained closed.  This minimised the transfer of smoke within the property and the 

effectiveness of this basic passive fire protection measure has been established.  The doors 

used within these experiments were traditional domestic doors, they were not fire doors 

and were not fitted with smoke seals. 

 

It is reasonable to suggest that in a compartment where the doors and windows are all 

closed, the likelihood is that the fire will become starved of O2 and will burn itself out.  

Ventilation direct to the fire compartment was therefore provided. 
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3.2.4 Scenario 4 
 
Experiment 7 comprises a growing fire using a single sofa as the only fuel source.  This 

experiment was under-ventilated (compared with Scenario 2) and the fire compartment 

door was held open to allow the products of combustion to travel around the remainder of 

the property. 

 

3.2.5 Scenario 5 
 
Experiment 8 comprises a growing fire using a single sofa as the only fuel source.  This 

experiment was under-ventilated (compared with Scenario 2) and the fire compartment 

door was held open to allow the products of combustion to travel around the remainder of 

the property.  A bedroom window was held open to consider the effects of first floor smoke 

ventilation. 

 

3.2.6 Scenario 6 
 
Experiment 9 comprises a growing fire using a single sofa as the only fuel source.  This 

experiment was under-ventilated (compared with Scenario 3) with the window partially 

open and the fire compartment door closed.  This minimised the transfer of smoke within 

the property and the effectiveness of this passive fire protection measure was established. 

 

3.2.7 Scenario 7 
 
Experiment 10 comprises a growing fire using a single sofa as the only fuel source.  This 

experiment was well-ventilated and the fire compartment door was held open to allow the 

products of combustion to travel around the remainder of the property.  A bedroom window 

was held open to consider the effects of first floor smoke ventilation. 
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3.2.8 Scenario 8 
 
Experiment 11 initially comprises a steady state fire using cooking oil contained within a 

pan.  Additional fire loading was contained within the kitchen only (i.e. floor and wall 

mounted kitchen units and other combustibles).  This fire scenario therefore had the 

potential to grow into a fully involved compartment fire.  This experiment was well 

ventilated and the fire compartment door was held open to allow the products of 

combustion to travel around the remainder of the property. 

 

3.2.9 Scenario 9 
 
Experiment 12 comprises a growing fire initially ignited on a single sofa.  There was 

additional fire loading contained within the lounge only (i.e. additional furniture, carpet, 

curtains etc.).  This fire scenario therefore had the potential to grow into a fully involved 

compartment fire.  This experiment was well-ventilated and the fire compartment door was 

held open to allow the products of combustion to travel around the remainder of the 

property. 

 

3.2.10 Scenario 10 
 
Experiment 13 comprises a growing fire initially ignited on a single sofa.  There was 

additional fire loading contained within the lounge only (i.e. additional furniture, carpet, 

curtains etc.).  This fire scenario therefore had the potential to grow into a fully involved 

compartment fire.  This experiment was under-ventilated and the fire compartment door 

was held open to allow the products of combustion to travel around the remainder of the 

property. 
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3.2.11 Scenario 11 
 
Experiment 14 comprises a growing fire initially ignited on a single sofa.  There was 

additional fire loading contained within the lounge only (i.e. additional furniture, carpet, 

curtains etc.).  This fire scenario therefore had the potential to grow into a fully involved 

compartment fire.  This experiment was well-ventilated and the fire compartment door 

remained closed.  This minimised the transfer of smoke within the property and the 

effectiveness of this passive fire protection measure can be established. 

 

3.3 Experimental Comparison 
 
The scenarios have been designed such that the number of variables between different 

experiments is kept to a minimum.  This is required in order to isolate the deliberate 

variations that have been made and to identify any effects that they have.  The experimental 

design considers a number of variables as discussed in the following sections and was 

developed by the author, in consultation with managers from within WMFS, technical 

advisors from UCLAN and with Prof David Purser who has significant experience in 

undertaking large scale fire tests and quantifying the toxic gases produced [23]. 

 

3.3.1 Fuel Comparison 
 
A comparison of the findings from Scenarios 1 and 2 yields information which identifies 

the specific hazards associated with cooking oil and upholstered furniture as different fuel 

types.  The statistical analysis conducted within Chapter 2 identifies that fire fatalities 

typically arise as a result of fires involving furniture and furnishings.  Conversely the 

statistics show that fire injuries typically occur as a result of fires involving foodstuffs, 

particularly cooking oil. 
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3.3.2 Passive Fire Protection Comparison 
 
Passive fire protection, within these scenarios, is provided in the form of closed doors as 

recommended within WMFS’s ‘night time routine’ campaign.  This passive measure was 

evaluated for its ability to protect the occupants in all experiments.  Gas concentrations 

were taken in two separate first floor bedrooms concurrently, one bedroom having a closed 

door and the other bedroom having an open door.  Additionally, comparisons between 

Scenarios 2 and 3, Scenarios 4 and 6 and Scenarios 9 and 11 indicated the level of 

protection afforded when the fire compartment door was closed. 

 

3.3.3 Comparison of Smoke Detector Actuation Times 
 
A critical factor when considering survivability, within a domestic fire situation, is the 

occupant’s recognition that they are faced with a hazardous situation as a result of early 

fire detection and alarm. 

 

In all 11 scenarios, the point at which the fire is detected by the automatic heads was 

recorded by measuring the electrical response from the smoke detectors.  This data 

informed the analysis in respect of the following parameters. 

 

 The alarm actuation time was assessed to establish whether or not it was possible for the 

occupants to escape from within the property without the aid of the F&RS.  Essentially, the 

tenability of the staircase was determined at a relevant point and deemed either passable or 

impassable, condition dependent. 

 The alarm actuation time is a distinct point from which F&RS intervention times have been 

calculated, based on the assumption that once the occupants become aware that there is a 

fire, they call 999. 
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3.3.4 Comparison of Ventilation Levels 
 
The degree of ventilation afforded to a compartment fire is also perceived to be critical 

when it comes to the rate of fire development and the rates of production of the various 

products of combustion.  It is widely recognised that under-ventilated fires are more likely 

to produce increased levels of the asphyxiant gases CO and HCN [23] and other products 

of incomplete combustion.  In order to determine the human effects of under-ventilated 

fires in comparison to well-ventilated fires, a comparison was made between Scenarios 2 

and 4, Scenarios 3 and 6 and Scenarios 9 and 10.  It is also recognised that a well-ventilated 

fire will potentially grow faster and an under-ventilated fire will potentially produce a 

higher yield of asphyxiant gases. 

 

3.3.5 Comparison of Duplicate Tests 
 
As part of the experimentation, a number of the tests are duplicated to try to assess the 

reproducibility of a specific test set up.  It is was recognised that the phenomenon of fire is 

affected by many external factors and that it is not always possible to get reproducible 

results.  Every effort was made to ensure that those external factors which are controllable 

are in fact controlled to help with reproducibility.  Experiments 1 and 2, 3 and 4 and 5 and 

6 are all identical and were used to establish reproducibility. 

 

3.3.6 Comparison of Fire Loading 
 
A comparison was made between experiments where a single item was involved in 

combustion and where the fire was allowed to spread to a fully furnished compartment.  

Scenario 1 has been compared with Scenario 8 to consider the fully furnished kitchen fire 

situation and Scenarios 2 and 9, Scenarios 4 and 10 and Scenarios 3 and 11 have been 

compared to consider a fully involved lounge fire.  
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3.4 Experimental Data Gathering 
 
Working in conjunction with UCLAN (Rob Crewe/Richard Hull), SPRUE AEGIS (Stuart 

Hart/James King), ISG (Mark Smith) and WMFS (various) the fire experiments have been 

designed to locate the measurement equipment to best support this study.  All organisations 

providing instrumentation to support the data gathering process have signed a data sharing 

agreement.  Details of the various measurement processes are given below. 

 

For the purposes of this study and in lieu of the fact that sensory irritancy and smoke 

obscuration are not likely to be significant factors, the focus will be towards assessing the 

hazards presented by the asphyxiant gases and heat. 

 

During the experimentation and data gathering activities carried out within this project, 

temperature data has been gathered in a number of locations, however, no heat flux data 

has been collected.  On this basis, the FED from the convective portion of heat only has 

been considered.  It was expected that the convective portion will certainly be the main 

consideration outside of the fire compartment, where radiated heat doses are limited. 
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3.4.1 Gas Analysis 
 
During the fire tests data was gathered to establish the gas concentrations for CO, CO2, O2 

and HCN.  The data for CO, CO2 and O2 was continuously monitored through the use of 

non-dispersive infrared (CO, CO2) and electrochemical cells (O2).  This equipment takes 

40 readings per minute such that the concentrations are updated every 1.5 seconds.  HCN 

concentrations were determined by bubbling effluent through a sorbent solution (Sodium 

Hydroxide).  Analysis of the solution allows the gas phase HCN concentrations to be 

calculated as an average over the time period of bubbler sampling.  The HCN 

concentrations are less precisely known as a function of time, but are essential as they are 

expected to contribute significantly to the overall hazard to life. 

 

Gas sampling was undertaken in two separate bedrooms on the first floor, one with its 

doorway open and one with its door closed.  In addition, samples were taken on the first 

floor landing and within the fire compartment (remote from the fire), with all sample points 

being placed at a typical head height position of 1.6m above the floor.  HCN data has only 

been gathered where nitrogen containing fuels are likely to be involved. 

 

3.4.2 Mass Loss Data 
 
In order to determine the rate at which the fuel is being consumed by the fire, a series of 

load cells were set up to calculate the mass loss of fuel.  This data was utilised to establish 

the rates of smoke production, the yields of toxic products and typical fire growth rates.  

Comparisons were also be made to check the reproducibility of the live fire tests and this 

allows the results to be extrapolated to other fire scenarios.  Mass loss data has only been 

collected for the sofa in the lounge fire scenarios. 
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3.4.3 Temperature Profiles  
 
A series of thermocouple trees were located throughout the premises to gather data on the 

temperature profiles within various compartments.  Thermocouples were attached to a 

vertical stanchion at 300 mm intervals to measure the temperature profile between floor 

and ceiling, with continuous data being recorded on a data logger.  Thermocouple trees 

were located within the fire compartment (lounge or kitchen), on the first floor landing, and 

within the two bedrooms, for comparison and to look at dilution rates as the smoke is 

transported.  Temperature profiles have been, analysed in conjunction with gas analysis to 

determine the quantity and concentration of smoke being produced by the fire. 

 

3.4.4 Video Footage 
 
Video footage was taken from within the building whilst the fire scenarios were being 

conducted.  This evidence was used to interpret unexpected values in other streams of data.  

Video equipment using both visual and thermal imaging cameras was used to document 

fire growth and smoke transportation.  Key locations for data gathering include the fire 

compartment, the hallway and the landing. 

 

3.4.5 Smoke Detector Actuation Times 
 
Domestic ionisation smoke detectors were fitted throughout the property and linked to data 

logging equipment.  When each detector reaches its threshold it goes into alarm mode, 

producing an audible warning and a flashing light.  During these experiments the audible 

warning had been disarmed for each detector to minimise noise interference and electrical 

responses from each detector were measured to determine the actuation time for that head.  

Different alarm heads, calibrated to have different actuation thresholds, were monitored 

either side of the standard threshold to obtain an accurate fire detection and alarm time. 
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Detectors were located within the typical locations of the property, namely in circulation 

spaces in the hallway on the ground floor and the landing on the first floor.  Additional 

detection was also be placed within the fire compartment and within the bedrooms. 

 

3.4.6 Visual Obscuration 
 
A simple piece of apparatus was developed by Sprue to establish the visibility within a 

room at a given time.  This apparatus can be seen in Plate 3 and is a controlled way of 

suspending a light source and a photoelectric cell, each 1m apart, at a height of 1.5 m above 

floor level.  Data from this source can be converted to identify the reduction in visibility 

caused by the smoke and gives the distance to which the human eye can see. 

 

It has been shown that smoke-logging to corridors or walkways will reduce the walking 

speed for an escaping person [85].  Where visibility along the escape route is reduced to 

less than 3 m it has been shown that the occupier is unlikely to travel through these 

conditions [42][86][87], it will be assumed that the occupants will turn and go back. 

 

 
Plate 3 – Visual obscuration monitoring equipment 
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3.5 Calibration of Equipment 
 
Efforts were made to ensure that all data gathering equipment is scientifically calibrated 

prior to use in a test; this will be achieved as follows: - 

 

 CO/CO2/O2 – the equipment used for establishing the gas concentrations was regularly 

calibrated using standard calibration gas samples, these are shown in Appendix C 

 HCN – samples for HCN concentrations were gathered and returned to UCLAN after each 

day of testing; their concentrations will be based on the mass of KCN used as a primary 

standard.  Analysis was undertaken within 48 hours to avoid degradation of samples 

 Temperature profiles – thermocouples tend to be fairly robust and reliable, each 

thermocouple was tested prior to the series of experiments 

 Smoke detection – each head was individually calibrated by the manufacturer prior to use 

 Mass loss – this equipment uses amplified electrical responses to quantify the load placed 

upon each cell; it is calibrated with a known mass before use 

 Visual Obscuration – this equipment takes a fractional value which is compared to a 

baseline immediately prior to the test and can therefore establish obscuration without any 

calibration 
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3.6 Location for Fire Testing 
 
Each of the fire tests was conducted within an unoccupied house in Birmingham.  The 

property was offered to WMFS, for the purposes of running these tests, by Birmingham 

City Council.  This property was carefully selected to enable the study to be completed in 

a real house so that the data would be relevant to a typical fire, rather than being completed 

in a custom-built test facility. 

 

An external photograph of the premises is given in Plate 4 and shows that this is a semi-

detached house.  The fire tests were conducted in the property to the left of this photograph 

and much of the data logging equipment was stored in the property on the right with access 

holes being made in the interconnecting internal wall for pipework and cabling.  All holes 

were then be sealed with fire resistant expanding foam to retain the building’s integrity.  

Security grills were removed as appropriate to allow for full control of the ventilation 

conditions. 

 

 
Plate 4 – External picture of the property used for testing (left hand side) 
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The internal layout of the property can be seen in Figure 39 and Figure 40, which show the 

ground and first floor plans and show a ceiling height of 2.45 m throughout, not to scale. 

 

 
Figure 39 – Ground floor plan of property used for testing 
 

 

 
Figure 40 – First floor plan of property used for testing 
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3.7 Description of Fuel Sources 
 
This section is used to describe the types of fuel which were used in each of the different 

fire scenarios and the method for ignition of these fuel packages. 

 

3.7.1 Kitchen Fuel Source 
 
On the basis of the conclusions drawn in Section 2.4, the kitchen fire scenarios involved 

the ignition of a quantity of cooking oil.  A large pan was placed on top of a propane gas 

burner as seen in Plate 5.  The pan was filled with 2.5 L of sunflower oil and the burner 

was ignited.  The oil needed to be heated from its ambient temperature for some 

considerable time until it reached a point where piloted ignition could occur and flaming 

combustion could be sustained.  The burner remained ignited for the duration of each of 

these experiments.  Experiments 1 and 2 only involved the burning oil and Experiment 11 

was allowed to spread from the oil to nearby combustible cupboards. 

 

 
Plate 5 – Image of kitchen fire fuel source (post-ignition) 
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3.7.2 Lounge Fuel Source 
 
The fuel in the lounge fire scenarios is an upholstered two-seat sofa.  In order to achieve 

reproducibility between experiments, a total of eleven identical brand new sofas were 

purchased.  The fuel for the lounge fires is much more complex in terms of its composition 

and these sofas conform to the current Furniture and Furnishings (Fire) (Safety) 

Regulations [60].  The furniture is delivered in 6 separate parts with a seat base, a seat back, 

a left arm, a right arm, four feet and a bag of fixings.  The base, back and arms were all 

made from a timber frame with a mixture of polyurethane foam and non-woven polyester 

wadding used to provide cushioning. 

 

The mass of each of the component parts of the sofa was accurately measured and the mass 

of each component is shown in Table 27 overleaf; the total mass of the sofa was just in 

excess of 63 kg.  These masses are then grouped together in Table 28, which shows that 

62% of the mass of the sofa comes from timber materials and 30% comes from manmade 

plastic materials either in an expanded foam or fibrous form.  Non-combustible metal 

components make up 6% of the mass and the remaining 2% is made equally from cardboard 

and cotton. 

 

In all experiments involving fires in the lounge, the sofa was placed in the same position 

against an external wall, as indicated in Figure 41, Section 3.8.  The sofa was raised slightly 

onto a platform which was held up by the 4 load cells.  This raised the sofa up slightly from 

the floor, by approximately 8 cm, but allowed the mass of the sofa to be recorded constantly 

throughout the experiment. 
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Seat 
Base 

Seat 
Back 

Left 
Arm 

Right 
Arm 

Feet  Fixings  Total 

                          

Frame 

Solid Pine  3.00  3.46  1.17  1.17   ‐    ‐   8.80 

Fibreboard  0.10  3.68  1.22  1.22   ‐    ‐   6.22 

Particleboard  2.60  1.04  6.20  6.20   ‐    ‐   16.04 

Plywood  1.52  2.76  0.62  0.62   ‐    ‐   5.52 

Cardboard   ‐   0.02  0.42  0.42   ‐    ‐   0.86 

Steel Support  0.60   ‐    ‐    ‐    ‐    ‐   0.60 

Springs  Steel  2.30   ‐    ‐    ‐    ‐    ‐   2.30 

Elastic 
Webbing 

40% rubber 60% 
polypropylene 

 ‐   0.16   ‐    ‐    ‐    ‐   0.16 

Covering 
Material 

Non‐woven 
Polypropylene 

0.94  1.42  0.72  0.72   ‐    ‐   3.80 

Cushioning 

PU Foam (calf 
support ‐ 20kg/m3) 

0.04   ‐   0.04  0.04   ‐    ‐   0.12 

PU Foam (memory 
foam ‐ 50kg/m3) 

2.12   ‐   0.56  0.56   ‐    ‐   3.24 

PU Foam (standard ‐ 
25kg/m3) 

0.20  0.02   ‐    ‐    ‐    ‐   0.22 

PU Foam (standard ‐ 
35kg/m3) 

4.16   ‐   0.24  0.24   ‐    ‐   4.64 

Polyester Wadding 
(sheet form) 

0.46  0.30  0.44  0.44   ‐    ‐   1.64 

Polyester Wadding 
loose form) 

 ‐   5.32   ‐    ‐    ‐    ‐   5.32 

Cotton Wadding bag   ‐   0.26   ‐    ‐    ‐    ‐   0.26 

Leg  Solid Pine   ‐    ‐    ‐    ‐   2.52   ‐   2.52 

Fire‐
retarding 
interliner 

100% Cotton  0.22  0.10  0.04  0.04   ‐    ‐   0.40 

Fixings  Metal Bolts   ‐    ‐    ‐    ‐    ‐   0.60  0.60 

                          

   Total  18.26  18.54  11.67  11.67  2.52  0.60  63.26 

                          

   Grand Total  63.26  kgs                

 

Table 27 – Material composition of the sofas used in lounge fires 
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Material Mass (kg) Percentage Mass 

Timber 39.10 61.8 

Polyurethane 8.22 13.0 

Polyester 6.96 11.0 

Polypropylene 3.96 6.3 

Metal 3.50 5.5 

Cardboard 0.86 1.4 

Cotton 0.66 1.0 

Total 63.26 100.0 

Table 28 – Material groupings for the sofas used in lounge fires 
 

 

 
Plate 6 – Image of lounge fire fuel source (pre-ignition) 
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In accordance with furniture and furnishings regulations compliance, the sofas would not 

readily ignite when exposed to a lit cigarette or match.  Where house fires occur however, 

it is still commonplace for sofas which comply with these regulations to readily contribute 

towards the fire.  This usually occurs as a result of a small fire being initiated and then 

spreading to the sofa.  A typical example of this would be a newspaper or a material throw 

which is ignited first and creates enough heat to ignite the sofa. 

 

In order to ensure that the sofa is ignited, the arm-rest and the vertical and horizontal 

cushion fabric was scored using a knife on each surface, in close proximity.  This can be 

seen in Plate 7 where the material has a cut of approximately 12cm on the arm, the seat and 

the back.  Two sheets of crumpled newspaper were placed into each of the three cuts.  A 

photograph of the sofa shortly after ignition is given in Plate 8 to show the early stages of 

fire development. 

 

 
Plate 7 – Method of ignition for the sofa 
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Plate 8 – Image of lounge fire fuel source (post-ignition) 
 

In accordance with the findings of the statistical analysis, it might have been relevant to 

complete a number of tests involving fires in bedrooms.  These additional experiments 

would have placed a burden on the experimental phase and may have meant that repeat 

experiments were not possible to establish reproducibility. 

 

For the purposes of this study, it is reasonable to assume that a fire in a bedroom would 

present a risk to the occupants of the property, which is equivalent to that of a fire in the 

lounge. 

 

  



R.Walker PhD Thesis  3 – Experimental Design 

 

 
139 

3.8 Location of Sampling Points 
 
Figure 41 and Figure 42 show the locations where measurements were taken. 

 

 
Figure 41 – Ground floor plan of property showing sampling points 
 

 
Figure 42 – First floor plan of property showing sampling points 
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On the ground floor, gas sampling and thermocouple readings were taken in the fire 

compartment only.  During those scenarios where the fire is in the kitchen, there were no 

measurements from within the lounge and vice-versa and the corresponding door was 

closed. 

 

All gas sampling points were taken at 160 cm from floor level to represent the height of the 

oronasal cavity for an average adult in the standing position [88].  All smoke detectors were 

ceiling mounted using manufacturer provided fittings.  The thermocouple trees each had 8 

temperature probes mounted upon them.  Each of the 8 thermocouples was mounted 30 cm 

apart vertically and they measure the temperature at 30 cm, 60 cm, 90 cm, 120 cm, 150 cm, 

180 cm, 210 cm and 240cm from floor level in a vertical plane.  The uppermost 

thermocouple (240 cm from floor level) was 5 cm below the ceiling. 

 

HD video camera footage was taken within the fire compartment and in the hallway for all 

experiments as was thermal imaging camera video footage.  The cameras located inside the 

fire compartment were pointed in the direction of the fire source.  The cameras located in 

the hallway were pointed towards the doorway to the fire compartment and slightly 

upwards to capture smoke and heat movement on the underside of the ceiling. 
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3.9 Scientific Validity of Data 
 

One of the disadvantages of using an existing property for these tests was the limit to which 

variables can be controlled.  The experimental design was such that a number of key 

variables were being tested.  For example, if two tests are being conducted with the aim of 

establishing the difference between two different ventilation areas then it is important to 

ensure that these are kept constant throughout each experiment.  The main concern here 

was that additional ventilation could be inadvertently created part way through an 

experiment through the failure of existing glazing having been exposed to heat.  The 

following activities were undertaken prior to each experiment to ensure reproducibility and 

scientific validity of the data. 

 
 All windows which are perceived to be at threat from heat were protected using 

plasterboard to prevent unwanted openings part way through an experiment 

 Open windows were simulated using plasterboard to create an opening set to a 

predetermined size  

 Any open doors were held in the open position at right angles to the doorway using timber 

door stops 

 Composite boarding was applied to the walls and ceiling of the fire compartment to 

maintain the structural integrity of the building and to prevent smoke and heat travelling 

through the property through holes created during an earlier experiment 

 A team of people worked between experiments to check for structural damage and to repair 

any areas where this may have occurred 

 The property was cooled and aired between experiments to allow for temperatures to return 

to an ambient condition, positive pressure ventilation was used to assist 

 Gas and temperature sampling points remained in position throughout all of the 

experiments 
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Chapter 4 - Analysis of Data Gathered 
 
Of the 14 planned experiments, a total of 13 of these were conducted and a further planned 

experiment (Experiment 6) was not conducted at all due to time constraints.  Experiment 6 

was due to be one of two experiments which were a duplicate. 

 

The ambient temperature over the period of the experiments was well above average with 

typical daytime temperatures between 28-32°C outside of the property.  Wind speeds were 

moderately low and moving constantly in a South Westerly direction.  The address of the 

property was 22 Tern Grove, Kings Norton, Birmingham. 

 

Table 29 shows the matrix of data gathered during each experiment.  Note that both low and 

high sensitivity smoke alarms are being used to record actuation times.  Low and high 

sensitivity in respect of these experiments refers to the fact that the detectors are programmed 

to respond within the upper and lower sensitivity limits as prescribed by the British Standard 

[89]. 

 

The table shows that no useable data was gathered from the obscuration meter in the fire 

compartment with this being a result of the damage caused to it during some of the earlier 

experiments and it no longer being used. 

 

The absence of mass loss data is as a result of this piece of equipment failing during testing.  

This is discussed further within Section 4.3.4. 
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      1  2  3  4  5  7  8  9  10  11  12  13  14 
W
M
FS
 

Video (Fire Compartment)                                        

Video (Hallway)                                        

TIC (Fire Compartment)                                        

TIC (Hallway)                                        

SP
R
U
E 

Scatter Detector (Fire Comp./Low Sensit.)                                        

Scatter Detector (Fire Comp./High Sensit.)                                        

Obscuration Meter (Fire Compartment)                                        

Scatter Detector (Hallway/Low Sensit.)                                        

Scatter Detector (Hallway/High Sensit.)                                        

Obscuration Meter (Hallway)                                        

Scatter Detector (Landing/Low Sensit.)                                        

Scatter Detector (Landing/High Sensit.)                                        

Obscuration Meter (Landing)                                        

Scatter Detector (Open Bed./Low Sensit.)                                        

Scatter Detector (Open Bed./High Sensit.)                                        

Obscuration Meter (Open Bedroom)                                        

Scatter Detector (Closed Bed./Low Sensit.)                                        

Scatter Detector (Closed Bed./High Sensit.)                                        

Obscuration Meter (Closed Bedroom)                                        

U
C
LA
N
 

Mass Loss Data                                        

Gas Analysis CO/CO2/O2 (Fire Compart.)                                        

Gas Analysis HCN (Fire Compartment)                                        

Temperature Profile (Fire Compartment)                                        

Gas Analysis CO/CO2/O2 (Landing)                                        

Gas Analysis HCN (Landing)                                        

Temperature Profile (Landing)                                        

Gas Analysis CO/CO2/O2 (Open Bedroom)                                        

Gas Analysis HCN (Open Bedroom)                                        

Temperature Profile (Open Bedroom)                                        

Gas Analysis CO/CO2/O2 (Closed Bedroom)                                        

Gas Analysis HCN (Closed Bedroom)                                        

Temperature Profile (Closed Bedroom)                                        

Table 29 – Data gathered during experimentation 
 

Key: 

Red = no data was successfully gathered 
Orange = data was gathered but its validity is in question 
Green = useable data was gathered 
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4.1 Analysis of Individual Experiments – Group 1 
 
The results from the 13 large-scale fire tests have been grouped together in order to present 

the data in an efficient way that will assist with making comparisons and will support the 

checking of reproducibility.  The first group includes all three of the fires located in the 

kitchen; the second group includes all of the lounge fires where the lounge door was open and 

the third group covers all of the lounge fire scenarios where the lounge door was closed. 

 
The first grouping covers Experiments 1, 2 and 11 and considers scenario 1 which involved 

just a pan of oil on fire and also scenario 8 which involves a pan of oil on fire which is 

subsequently allowed to spread to the nearby kitchen units. 

 

4.1.1 Smoke Detector Analysis 
 
In all three experiments smoke detectors which were located outside the kitchen actuated prior 

to piloted ignition of the cooking oil.  Observation of these experiments showed that there 

was significant amounts of smoke and airborne particulate matter released during the pre-

ignition phase.  These clearly led to actuations of smoke detectors within the fire compartment 

and elsewhere within the property, all prior to ignition.  The detector actuation times for the 

closed bedroom in Experiment 11 are short, compared to subsequent experiments, as the fire 

within this experiment has a higher fuel consumption rate and generates significantly more 

smoke. 
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Figure 43 shows the average actuation times and gives an indication of the rate at which smoke 

and airborne particulates are transported from one room to the next, within the property.  

Smoke detectors are not usually found in kitchens, although heat detectors are sometimes 

used, however it is reasonable to expect to see working smoke detectors located in the 

circulation spaces such as the hallway and landing. 

 

 
Figure 43 – Average smoke detector actuation times (kitchen fires) 
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4.1.2 Temperature Profiles 
 
Figure 44 shows the temperature profiles for the three experiments where the fire was located 

within the kitchen.  The figure shows temperature profiles within the kitchen only, at 150 cm 

above floor level.  There appears to be good reproducibility between the duplicate 

Experiments 01 and 02 and temperatures increase significantly where the fire is allowed to 

spread to the other combustible items in Experiment 11. 

 

 
Figure 44 – Kitchen temperature profiles (at 150 cm) 
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The maximum temperatures, at head height within the kitchen, are around 60°C where only 

cooking oil is undergoing combustion, with temperatures increasing to a maximum of 275°C 

where the fire spreads to other combustibles. 

 

Figure 45 shows the same profiles as Figure 44 except that they are taken on the landing.  

Again there is reproducibility between Experiments 01 and 02 where temperatures peak at 

just below 40°C and with Experiment 11 again the temperature profile is higher with a peak 

of around 70°C.  Video evidence from Experiment 11 suggests that the fire reaches its 

maximum intensity at between 5 and 8 min after which there is no further fire spread and the 

fire subsides, corresponding to the temperature profiles observed. 

 

 
Figure 45 – Landing temperature profiles (at 150 cm) 
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Figure 46 – Experiment 01 temperature profiles (at 150 cm) 
 

Figure 46 shows the temperature profiles at each of the four sampling points within the 

kitchen, landing, open bedroom and closed bedroom, for Experiment 01 only.  Temperatures 

are as expected, with the highest temperature in the fire compartment (kitchen) and 

temperatures reducing steadily as the smoke travels away from the fire.  The reduction in 

temperature is due to two main causations: - 

 
 Heat transfer from the smoke layer into the structure of the property 

 Entrainment of ambient air due to turbulence having a diluting effect 

 

This figure also demonstrates the time lag of smoke transfer from one compartment to the 

next, with temperatures in the kitchen beginning to rise at 6 min, on the landing the rise 

commences at around 7 min and in the open bedroom it begins at 8 min.  This gives a 

reasonable indication of the rate at which the toxic effluent moves through the property.
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Figure 47 – Experiment 11 temperature profiles (at 150 cm) 
 

Figure 47 shows the temperature profiles in the four rooms during Experiment 11.  This graph 

clearly shows a lag in peak temperature with the peak at around 6 min in the kitchen, around 

7 min on the landing and at 8 min within the open door bedroom.  The one minute lag in 

smoke transfer between these three rooms is consistent with that seen in Figure 46, during 

Experiment 01. 

 

It is also seen that there is little increase in temperature in the bedroom with the closed door.  

As these heat transfers are solely driven by convection, it is reasonable to suggest that only a 

small amount of smoke travels into this room.  The closed door therefore performs a positive 

function in preventing smoke from freely travelling into the compartment it protects. 
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Figure 48 shows the temperature profiles within the kitchen during Experiment 11 at various 

heights.  There were 8 thermocouples set 30 cm apart however the data gathered from the 

thermocouple at 210 cm from floor level was erroneous and is omitted from this figure. 

 

The peak temperature of 537°C occurred just below the ceiling, whilst at 30 cm from the floor, 

the maximum temperature recorded was 119°C.  Each of the thermocouples records gradually 

cooler temperatures from ceiling downwards as would be expected. 

 

 
Figure 48 – Experiment 11 kitchen temperature profiles (at various heights) 
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4.1.3 Gas Concentrations 
 
Table 30 shows the peak gas concentrations measured during Experiments 01, 02 and 11 for 

CO2, CO and O2.  For CO2 and CO this is an upper concentration peak and as oxygen depletion 

is being considered, for O2 it is a lower concentration peak. 

 

It shows that the concentrations of CO2 and CO are relatively low during Experiments 01 and 

02 and that the O2 levels during these only drop a little below atmospheric conditions at 21%.  

The size of the fire was controlled to a relatively small amount of cooking oil during these 

experiments and therefore the gas concentrations seem appropriate. 

 
Experiment 
Number 

Room 
CO2 Peak 

(%) 
Time 

(mm:ss) 
CO Peak 

(%) 
Time 

(mm:ss) 
O2 Peak 
(%) 

Time 
(mm:ss) 

Exp.01 

Kitchen  0.21  19:17  0.03  11:17  20.75  19:12 

Landing  0.07  19:54  0.00  3:05  20.83  19:57 

Open (BR)  0.01  1:00  0.00  19:17  20.70  19:44 

Closed (BR)  0.00  ‐  0.01  13:30  21.00  ‐ 

Exp.02 

Kitchen  0.89  7:03  0.06  19:43  19.78  7:01 

Landing  0.94  13:23  0.01  13:57  19.63  12:33 

Open (BR)  0.90  14:39  0.02  17:53  20.97  ‐ 

Closed (BR)  0.90  14:41  0.01  14:41  21.00  ‐ 

Exp.11 

Kitchen  13.44  6:26  2.70  6:06  1.87  6:22 

Landing  4.76  8:11  0.84  6:49  14.96  8:03 

Open (BR)  4.48  8:57  0.73  8:01  15.10  8:29 

Closed (BR)  0.52  18:28  0.08  18:28  20.30  18:12 

Table 30 – Peak gas concentration times (kitchen scenarios) 
 

In Experiment 11, where the fire was allowed to spread, it can be seen that the peak gas 

concentrations within the kitchen all appear at between 6:00 and 6:30, in line with the point 

at which the fire was at its peak, as seen through video evidence.  A peak CO2 of 13.4% was 

observed at 6:26, a peak CO of 2.7% occurred at 6:06 and a peak O2 of 1.9% occurred at 6:22. 
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The data for each of the gas concentrations within the kitchen during Experiment 11 are given 

in Figure 49.  These gas concentration curves are typical of this type of combustion 

experiment and show increases in CO2 and CO at the same point where O2 decreases. 

 

 
Figure 49 – Experiment 11 kitchen gas concentrations 
 

It shows the fire in the growth phase up to around 5 min, the developed phase from 5 to 8 min 

before it starts to decay.  This observation is consistent for the temperature profiles, the gas 

concentrations and the images seen in Plate 10. 

 

Video evidence shows a minor explosion at floor level within the fire compartment at around 

7 min, believed to be from a smoke detector which has fallen from the ceiling.  This creates a 

significant shockwave which disturbs the flames on top of the kitchen units.  It is possible that 

this shockwave causes turbulence in the upper smoke layer and momentarily introduces O2 

from the cool lower layer, thus creating a spike which is seen in Figure 49. 
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Figure 50 shows the ratio between the rates of production of CO and CO2 within the kitchen.  

Experiment 11 was reasonably well-ventilated and the peak ratio occurs during the developed 

stage of the fire where CO is produced at a ratio of between 0.18 and 0.22 when compared 

with CO2 production.  As the O2 concentration has fallen to below 10% it is reasonable to 

assume that the fire is ventilation-controlled. 

 

In this figure all of the CO:CO2 ratio data points prior to 2½ min are removed as the results 

are erroneous because of the extremely low levels of each gas being detected.  The CO ratio 

is seen to increase sharply at the point where the fire transitions between the growth and 

developed phases.  After 8 min the fire enters the decay phase and the CO ratio drops to 0.05 

as the fuel starts to run out. 

 

When comparing the CO production ratio with the O2 concentration, it is observed that CO is 

produced much more prominently where the O2 level drops below a 10% threshold. 

 

Presumably as a result of the shockwave, the O2 level near the fire is seen to increase 

momentarily at around 7 min.  This peak is met with a dip in CO production before it rises 

again as the O2 level drops back down.  It can be said that, within certain constraints, these 

two curves represent the opposite of each other as would be expected during a vitiated 

combustion reaction. 
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Figure 50 – Experiment 11 kitchen fire CO:CO2 ratio (O2 concentration) 
 

4.1.4 Smoke Visibility 
 
As discussed in Section 3.4.6, the hallway and landing are deemed impassable once the 

visibility drops below 3 m.  The time at which this occurs is given in Table 31 for all three 
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Experiment 02 can be seen in Figure 51. 
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Experiment 
Number 

Location 
Time to 3m 
visibility 

Exp.01  Hallway  6:24 

Exp.02 

Hallway  4:20 

Landing  5:24 

Open Bedroom  7:40 

Closed Bedroom  >20:00 

Exp.11 

Landing  3:02 

Open Bedroom  3:44 

Closed Bedroom  9:35 

Table 31 – Time for visibility of 3m (kitchen scenarios) 
 

This data suggests that the visibility reduces fairly rapidly once the fire takes hold and that 

the hallway and landing, which are likely to be used to make an escape, become impassable 

somewhere between 4 and 6 min where the fire involves the oil only (Experiments 01 and 

02).  This figure is reduced to around 3 min where the fire is able to spread to other 

combustible materials within the fire compartment. 

 

 
Figure 51 – Experiment 02 room visibility conditions 
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Figure 51 also shows the delay in smoke travelling from the kitchen, through the hallway and 

landing and towards the bedrooms.  When it is considered that the two bedrooms are both 

open to the same landing area, the impact the door has on the closed bedroom to prevent 

smoke transfer is noticeable. 

 

Visibility through smoke remains above the threshold of 3 m for the duration of Experiment 

02, where a closed door provides protection. 

 

4.1.5 Video Analysis 
 
Video footage from within the fire compartment shows how the fire is developing throughout 

each of the experiments.  The first image in Plate 9 shows the fire in Experiment 01 at 10s, 

14 minutes and 20 minutes after ignition.  Vertically attached to the tall kitchen unit is a white 

post with black markings every 20 cm from the ceiling down.  Once the fire has developed it 

reaches a steady state, where it is observed that the smoke layer is consistently 80 cm thick, 

this is because the rate at which the fuel is consumed is controlled by the diameter of the pan.  

The level of smoke damage within the kitchen was consistent at the depth of 80 cm, as 

observed post-fire. 
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Plate 9 – Images from within the fire compartment for Experiment 01 
 

In Plate 10, it can be seen that the fire spreads to other fuel packages within Experiment 11 

and no such control to the depth of the smoke layer results.  Also, the fire develops during the 

early images to a point at approximately 4 to 5 min where the additional fuel packages become 

fully involved in the fire.  After the image taken at 8 min, it is noticeable that the fire is in the 

decay phase. 
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Plate 10 – Images from within the fire compartment for Experiment 11 
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4.1.6 Asphyxiant Gas FED Analysis 
 
Equation 8, established in Section 1.6.1, has been used in the analysis of the gas concentration 

data to yield a time to human lethality in various rooms within the property.  The time to 

lethality is established at two separate thresholds, for more vulnerable members of society at 

1.0×FED and for the healthy adult population at 2.5×FED.  Although a person can no longer 

act to help themselves once compromised tenability occurs, lethality is considered as the 

chosen threshold because a timely F&RS intervention can still prevent a fire death. 

 

Table 32 shows the outcomes of this analysis and concludes that the conditions during 

Experiments 01 and 02 are such that the occupants of all of the rooms, including the fire 

compartment, are likely to survive the simulated fire scenario for over 20 min.  This table also 

shows the actual dose received after 20 min in brackets, where FED is not reached within that 

period.  For example, in Experiment 01 vulnerable persons located within the kitchen would 

have received a dose of 0.12×FED after 20 min exposure which is less than the threshold for 

lethality. 

 

Experiment 
Number 

Room 
Time to 1.0xFED 

(vulnerable person) 
Time to 2.5xFED 
(healthy adult) 

Average 
time to 
1.0xFED 

Average 
time to 
2.5xFED 

Exp. 01 

Kitchen 

> 20 min (0.12)  > 20 min (0.12) 

N/A  N/A Exp. 02  > 20 min (0.22)  > 20 min (0.22) 

Exp. 11  4:38  5:44 

Exp. 01 

Landing 

> 20 min (0.00)  > 20 min (0.00) 

N/A  N/A Exp. 02  > 20 min (0.04)  > 20 min (0.04) 

Exp. 11  7:31  14:56 

Exp. 01 
Open 

Bedroom 

> 20 min (0.00)  > 20 min (0.00) 

N/A  N/A Exp. 02  > 20 min (0.00)  > 20 min (0.00) 

Exp. 11  8:27  15:32 

Exp. 01 
Closed 

Bedroom 

> 20 min (0.00)  > 20 min (0.00) 

N/A  N/A Exp. 02  > 20 min (0.00)  > 20 min (0.00) 

Exp. 11  > 20 min (0.06)  > 20 min (0.06) 

Table 32 – Asphyxiant gas FED time to lethality (kitchen scenarios) 
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In Experiment 11 it can be seen that a vulnerable person located within the kitchen would 

receive a fatal dose of toxic smoke at 4:38 whereas a healthy adult would survive until 5:44.  

There is good correlation between Experiments 01 and 02, however the results for Experiment 

11 show somewhat more hazardous conditions as a result of the involvement of additional 

combustible materials. 

 

 
Figure 52 – Experiment 11 asphyxiant gas FED development 
 

Figure 52 shows how the fractional effective dose develops as a factor of time during 

Experiment 11.  It can be seen that conditions within the kitchen reach the thresholds of 

lethality (1.0 and 2.5) prior to the other rooms within the premises.  As would be expected, 

the duration for human survivability increases within the individual compartments, the further 

they are from the fire source.  Conditions within the closed door bedroom remain survivable 

throughout, as the closed door acts as a protective barrier.  
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4.1.7 Heat FED Analysis 
 
Table 33 shows the time to lethality from exposure to heat and uses Equation 14 which was 

developed in Section 1.6.2.  The data from thermocouple 5 within each of the locations was 

taken with this thermocouple being located at 1.5m above floor level. 

 

It also shows that both vulnerable persons and healthy adults would survive the thermal 

conditions generated during Experiments 01 and 02, in all rooms including the fire 

compartment for in excess of 20 min.  This table also shows the actual dose received after 20 

min in brackets, where FED is not reached within that period.  .  During Experiment 11 fatal 

conditions are only seen within the kitchen and all conditions within all other rooms remain 

survivable, from the perspective of heat exposure. 

 

Experiment 
Number 

Room 
Time to 1.0xFED 

(vulnerable person) 
Time to 2.5xFED 
(healthy adult) 

Average 
time to 
1.0xFED 

Average 
time to 
2.5xFED 

Exp. 01 

Kitchen 

> 20 min (0.29)  > 20 min (0.29) 

N/A  N/A Exp. 02  > 20 min (0.24)  > 20 min (0.24) 

Exp. 11  5:32  6:05 

Exp. 01 

Landing 

> 20 min (0.08)  > 20 min (0.08) 

N/A  N/A Exp. 02  > 20 min (0.06)  > 20 min (0.06) 

Exp. 11  > 20 min (0.26)  > 20 min (0.26) 

Exp. 01 
Open 

Bedroom 

> 20 min (0.06)  > 20 min (0.06) 

N/A  N/A Exp. 02  > 20 min (0.05)  > 20 min (0.05) 

Exp. 11  > 20 min (0.13)  > 20 min (0.13) 

Exp. 01 
Closed 

Bedroom 

> 20 min (0.05)  > 20 min (0.05) 

N/A  N/A Exp. 02  > 20 min (0.04)  > 20 min (0.04) 

Exp. 11  > 20 min (0.05)  > 20 min (0.05) 

Table 33 – Heat FED time to lethality (kitchen scenarios) 
 

Lethality is likely to occur somewhere between 5:32 and 6:05 within the kitchen, during 

Experiment 11.  Again, no average FED times are taken due to the variation between the fire 

scenarios.  At 5:32, the temperature within the kitchen was recorded as 223°C and at 6:05, it 

was 273°C.  
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4.1.8 FED Conclusion 
 
The data presented within this section demonstrates that Experiment 01 and Experiment 02 

were comparable with respect to smoke detector actuation times, temperature profiles, gas 

concentrations and video analysis.  In Experiments 01 and 02, it can be concluded that 

inadequate amounts of heat and toxic smoke are produced to cause serious concern to the 

occupants of the building, even if they are located within the fire compartment. 

 

 
Figure 53 – Experiment 11 fire survival timeline 
 

Conditions within Experiment 11 are considerably worse and therefore a more detailed 

analysis for the various times to reach lethal exposure can be made.  Data indicate that smoke 

detectors located within the circulation areas are likely to provide an early warning at 5:49 

prior to ignition.  After ignition the escape route becomes impassable at 3:02 due to reduced 

visibility from smoke on the landing. 
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At 1:36, after the escape route becomes impassable, a fatality would occur within the kitchen; 

a further 2:53 and a fatality would occur on the landing; after a further 56 seconds a fatality 

would also occur within the open door bedroom and the closed door bedroom remains tenable 

for in excess of 20 min.  All fatalities within Experiment 11 occur as a result of smoke 

inhalation and not as a result of heat exposure. 

 
Event  Time 

Alarm Actuation  ‐5:49 

Ignition  0:00 

Visibility Lost  3:02 

Lethality (Fire Compartment)  4:38 

Lethality (Landing)  7:31 

Lethality (Open Bedroom)  8:27 

Lethality (Closed Bedroom)  > 20:00 

Table 34 – Lethality event / time analysis (kitchen scenarios) 
 

Figure 53 and Table 34 summarise this analysis and show that, a person located outside of the 

fire compartment would have a minimum of approximately 9 min to make their escape before 

the escape route becomes impassable, assuming that the audible alarm is their first indication 

of fire.  In addition, they would have at least a further 3 min before they could no longer 

survive the conditions on the landing.  Where an occupant takes the decision not to escape but 

to protect themselves within a room with a closed door on the upper floor, they are likely to 

survive for in excess of 20 min after ignition. 

 

The timeframes which allow for the occupants to make an escape or to protect themselves are 

relatively large and this may go some way to explain the comparatively high survival rates 

seen within kitchen fires, as indicated in Section 2.1.3. 
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4.2 Defining the HCN Concentrations 
 
In order to establish the asphyxiant gas tenability limits for lounge fires it is necessary to 

monitor CO, CO2, HCN and O2, these are measured in real-time using sensors.  They are 

recorded every 1.5 seconds throughout each test.  Asphyxiant gas analysis also requires 

measurement of HCN, for which no suitable sensor is available.  The most reliable method 

for fire effluent analysis involves trapping the gas in a sodium hydroxide solution in a bubbler, 

then using colourimetric reagents to quantify the HCN concentration.  As the sofas are 

manufactured using polyurethane foam which is nitrogen-containing, it is therefore capable 

of producing HCN during combustion.  However, the HCN is sampled for pre-set time periods 

and the average concentration over that period is determined. 

 

Nitrogen containing fuels produce both CO and HCN and there is an equivalence between the 

rates of production of these two gases.  The principle behind this approach is that HCN 

concentration has a linear dependency on CO concentration, both increasing as the fire 

becomes under-ventilated, Wang [90]. 

 

Initially a plot of all of the data points was made on one graph but it became apparent that the 

data suggests that the plume continues to be reactive as it moves away from the fire.  Separate 

research suggests that the CO to CO2 ratio in the plume will change, the further it travels from 

the fire source [76].  As the plume becomes diluted with clean air the O2 concentration rises, 

and where the plume contains sufficient energy, the CO will oxidise to CO2, thus reducing 

the ratio.  Similarly, HCN may be oxidised to NO or NO2 or form N2, but almost certainly at 

a different rate and under different conditions to CO.  This phenomenon might go towards 

explaining the reason for the changing ratio as HCN could be a more chemically stable 

constituent within the smoke layer.  
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Figure 54 to Figure 57 show the average CO and average HCN data points taken during these 

experiments at each of the sampling points and can be compared to establish an approximate 

correlation ratio.  On each of these figures a line of best fit is determined for each set of data 

points with the assumption being made that the correlation ratio is linear and that it passes 

through the origin. 

 

In the lounge there is a reasonable correlation (R2=0.57) between the data points and that for 

a 1% concentration of CO in the smoke plume, 271 ppm of HCN would be expected.  On the 

landing there is a good correlation (R2=0.70) between the data points and that for a 1% 

concentration of CO in the smoke plume, 388 ppm of HCN would be expected.  In the open 

bedroom there is a good correlation (R2=0.69) between the data points and that for a 1% 

concentration of CO in the smoke plume, 418 ppm of HCN would be expected.  In the closed 

bedroom there is a very good correlation (R2=0.81) between the data points and that for a 1% 

concentration of CO in the smoke plume, 444 ppm of HCN would be expected. 

 

The data points for the comparison of concentrations between both CO and HCN in the closed 

bedroom are all low as a result of the door being closed and preventing the free flow of smoke.  

The correlation ratios established within this section will be used within the analysis to 

determine the tenability times for asphyxiant gas exposure. 
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Figure 54 – CO to HCN equivalence ratio (lounge) 
 

 

 
Figure 55 – CO to HCN equivalence ratio (landing) 
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Figure 56 – CO to HCN equivalence ratio (open bedroom) 
 

 

 
Figure 57 – CO to HCN equivalence ratio (open bedroom) 
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When considering this data, it is suggested that the CO:CO2 ratio increases slightly as the 

smoke moves away from the fire.  Table 35 shows the average CO:CO2 ratios during the 

burning phase (typically between 6-15 min) for each of the experiments where the fire was in 

the lounge and the fire compartment door was open.  It was not appropriate to include the data 

from the kitchen fires as this is a different fuel type and some of the gas data in the lounge 

fire compartment door closed experiments yielded erroneous results, as discussed in Section 

4.4.1. 

 
Experiment 
Number 

Lounge  Landing 
Open 

Bedroom

Exp.03  0.0518  0.0510  0.0535 

Exp.04  0.0515  0.0901  0.0957 

Exp.07  0.0391  0.0446  ‐ 

Exp.08  0.0369  0.0380  0.0471 

Exp.10  0.0524  0.0512  0.0607 

Exp.12  0.0564  0.0638  0.0639 

Exp.13  0.0360  0.0363  0.0378 

Average  0.0463  0.0536  0.0598 

Table 35 – Average CO:CO2 ratio in various compartments 
 

This data shows that the average CO:CO2 ratio within the fire compartment between these 

seven experiments, during the burning phase, was 0.0463 which is equivalent to a yield of 

4.6% of CO per yield of CO2 by mass.  By comparison, over the same time period, the CO:CO2 

ratio on the landing was 0.0536 or 5.4% and in the open door bedroom was 0.0598 or 6.0%.  

Data for the closed bedroom door is not presented within this table because the concentrations 

were very low and therefore more susceptible to being inaccurate. 

 

This data tends to suggest that oxidation of the CO is occurring particularly in and around the 

fire compartment, where it would be expected.  It also suggests that further oxidisation 

between the landing and the open bedroom occurs.  
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Figure 58, shows the development of the CO:CO2 ratio during the burning phase for 

Experiment 04.  Prior to 6 min and after 18 min the data can become misleading as the 

concentrations are comparably quite low.  This figure shows that there is an initial peak (up 

to 0.18) in the CO:CO2 within the fire compartment during the growth phase of fire 

development and this then settles down to around 0.05 as the fire reaches steady state.  By 

comparison, the CO:CO2 ratio on the landing and in the open bedroom develop more slowly 

during the growth phase but then exceed that in the fire compartment at around 0.10 during 

the steady state phase. 

 

 
Figure 58 – Experiment 04 - CO:CO2 ratio in various compartments 
 

The data presented within this section of the thesis does suggest that it is reasonable to 
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Figure 59 shows the individual HCN and CO data points taken during Experiment 08, in the 

lounge, and used in the production of Figure 54.  The error bars show the timeframe over 

which the HCN concentration was gathered and the individual data points for both HCN and 

CO are an average taken over that timeframe. 

 

This graph is representative of those found in the other experiments with the individual data 

for each experiment being given in Appendix E. 

 

 
Figure 59 – Experiment 08 individual gas concentrations (lounge) 
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4.3 Analysis of Individual Experiments – Group 2 
 
This section of the thesis gives a detailed analysis of those experiments which involve a fire 

in the lounge and where the lounge door is in the open position.  The grouping covers 

Experiments 3, 4, 7, 8, 10, 12 and 13.  The majority of these experiments involve the 

combustion of a sofa only, however with Experiments 12 and 13 there are additional fuel 

packages within the fire compartment, such as carpet, curtains and further pieces of furniture. 

 

4.3.1 Smoke Detector Analysis 
 
Smoke detection within the lounge occurs on average at around 1:37, however, it is not typical 

for smoke detectors to be located in the lounge.  Smoke detectors are typically located within 

the hallway and landing and these actuated on average at 2:17 and 3:13, respectively.  

Unfortunately, it was not possible to obtain smoke detector actuation times in every room for 

every experiment due to time constraints and heat damage to the equipment and cabling and 

these points are averaged over, between 6 and 8 actuation times. 

 

 
Figure 60 – Average smoke detector actuation times (lounge fires open door) 
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The focus was to get actuation times within the hallway and landing for use in the timeline 

assessments.  A significant number of data points have been gathered in these locations and 

the results show reasonable reproducibility.  Figure 60  shows the average response times and 

also gives an indication of the rate at which smoke is transported from one room to the next. 

 

4.3.2 Temperature Profiles 
 
Table 36 contains temperature profile data for each of the seven experiments in the lounge 

with the fire compartment door open.  It shows reasonable agreement in the temperature 

development to 200°C and 400°C for six of the seven experiments with Experiment 03 

showing considerably slower fire growth rates.  For Experiments 04, 07, 08, 10, 12 and 13, 

the average time to reach 200°C is 6:32, however with Experiment 03 this took 11:22.  Again, 

for Experiments 04, 07, 08, 10, 12 and 13, the average time to reach 400°C is 8:03, however 

with Experiment 03 this took 12:35 as a result of this slower fire development. 

 
Experiment 
Number 

Time to 

200°C 
Time to 

400°C 
Max.Temp. 

(°C) 
Time to 

Max. Temp. 

Exp.03  11:22  12:35  530  15:10 

Exp.04  6:50  8:25  522  13:17 

Exp.07  7:23  8:16  482  11:23 

Exp.08  5:10  6:45  527  8:20 

Exp.10  7:53  9:34  606  13:06 

Exp.12  6:43  7:39  616  10:07 

Exp.13  5:13  7:37  483  8:51 

Table 36 – Temperature profiles (lounge open door scenarios) 
 

With regards to the maximum temperatures during each experiment, the highest three 

temperatures, which averaged 584°C, all came from fires which had 2 m2 ventilation, whereas 

the two lowest temperatures, which averaged 483°C, both came from fires which had 0.5 m2 

ventilation.  This supports the understanding that the maximum burning rate in compartment 

fires is controlled by the amount of ventilation.  
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A comparison of the temperature profiles for each experiment is given in Figure 61 which 

confirms the fact that the fire development within Experiment 03 was somewhat slower than 

that of the other 6 experiments, within this grouping.  The other 6 experiments do show a 

reasonably good correlation with the growth phase occurring between 5 and 8 min. 

 

Of all seven of the experiments, two (Experiments 03 and 04) were duplicates.  Clearly there 

is no significant agreement between the two temperature profile curves which does 

demonstrate the fact that there are many factors which can influence the rate at which a fire 

develops.  It is observed that whist the fire development curves are all very similar, there can 

be some variation in duration of the incubation period. 

 

 
Figure 61 – Lounge open door temperature profiles (lounge at 150 cm) 
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It also shows that the decay phase of the fire development curve tends to start at around 13 to 

15 min, at which point presumably, the majority of the available fuel has been consumed by 

the fire.  Experiment 12 is seen to decay slightly earlier than some of the other experiments 

and this is probably as a result of it reaching higher temperatures early on which indicates that 

the fuel was consumed earlier by the fire. 

 

Figure 62 shows the temperature profiles on the landing for each of the seven experiments 

and again the profiles follow a similar sequence to those in the lounge, with Experiment 03 

being the obvious curve which is not comparable. 

 

 
Figure 62 – Lounge open door temperature profiles (landing at 150 cm) 
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As with Figure 46, Figure 63 shows the temperature profiles at each of the four sampling 

points in the fire compartment, landing, open bedroom and closed bedroom, for Experiment 

04 only.  Temperatures are as would be expected with the highest temperature being recorded 

within the lounge and temperatures reducing steadily as the smoke travels away from the fire. 

 

It is typical of the other experiments discussed within this section of the thesis with the 

maximum temperature in the fire compartment reaching 522°C, the maximum on the landing 

is 125°C, in the open bedroom it is 71°C and in the closed bedroom the maximum is 36°C.  

In the closed bedroom the temperature rises by only 6°C above the ambient temperature prior 

to the experiment in comparison with a rise of 41°C in the open bedroom.  Again this is good 

evidence of the protection provided by the closed door. 

 

 
Figure 63 – Experiment 04 temperature profiles (at 150 cm) 
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Figure 64 shows the temperature profiles in the lounge at various heights during Experiment 

04.  Two of the thermocouples gave erroneous results, at 90 cm and at 30 cm.  The temperature 

profile curves at 150 cm and above show a temperature variation of only 50°C within the 

smoke layer during the fully involved stage of the fire.  It is interesting to see that the profile 

at 120 cm is significantly lower in temperature, some 150°C cooler during the same period.  

This indicates that the neutral plane, between the hot upper layer and the cooler lower layer, 

is likely to be located somewhere between 120 and 150 cm above floor level.  The neutral 

plane seems to be consistently at this height whilst there is still a reasonable amount of fuel 

burning. 

 

 
Figure 64 – Experiment 04 lounge temperature profiles (at various heights) 
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4.3.3 Gas Concentrations 
 
Table 37 shows the peak gas concentrations measured during Experiments 03, 04, 07, 08, 10, 

12 and 13 for CO2, CO and O2.  For CO2 and CO this is an upper concentration peak and, as 

O2 depletion is being considered, for this compound it is a lower concentration peak.  The 

data for HCN is derived from the CO concentration and is not therefore presented within this 

table. 

 

Experiment 
Number 

Room 
CO2 

Peak (%)
Time 

CO Peak 
(%) 

Time 
O2 Peak 
(%) 

Time 

Exp.03 

Lounge  12.43  13:03  0.81  13:53  6.81  13:47 

Landing  12.33  16:30  0.71  16:20  6.54  16:14 

Open (BR)  12.15  17:29  0.69  16:41  6.89  17:00 

Closed (BR)  12.13  17:35  0.69  17:08  7.06  17:06 

Exp.04 

Lounge  17.16  12:20  1.85  7:07  1.92  12:24 

Landing  15.23  13:39  1.91  13:57  3.91  12:29 

Open (BR)  14.63  14:13  1.89  14:17  4.33  14:01 

Closed (BR)  1.57  20:00  0.13  20:00  ‐  ‐ 

Exp.07 

Lounge  14.18  11:33  0.69  12:45  4.83  11:33 

Landing  13.06  12:24  0.42  9:57  6.15  12:00 

Open (BR)  ‐  ‐  ‐  ‐  ‐  ‐ 

Closed (BR)  4.19  18:45  0.18  18:42  15.81  18:39 

Exp.08 

Lounge  10.99  7:38  1.13  5:42  7.55  7:38 

Landing  8.55  9:07  0.51  9:07  10.54  9:08 

Open (BR)  7.55  12:36  0.42  11:48  11.11  12:17 

Closed (BR)  1.91  17:35  0.18  19:13  18.51  17:21 

Exp.10 

Lounge  13.43  11:00  0.64  11:18  5.51  11:00 

Landing  11.48  13:15  0.61  11:18  7.52  13:01 

Open (BR)  11.22  13:36  0.58  11:38  7.68  13:09 

Closed (BR)  5.04  19:21  0.31  20:00  15.11  18:20 

Exp.12 

Lounge  17.84  10:20  3.69  10:50  1.13  10:18 

Landing  13.45  10:28  2.42  11:10  4.78  10:53 

Open (BR)  12.42  11:20  2.10  11:50  5.49  11:25 

Closed (BR)  0.07  7:37  0.02  12:43  20.58  18:22 

Exp.13 

Lounge  12.26  8:50  0.63  8:44  6.87  8:44 

Landing  11.16  10:20  0.49  9:58  7.90  10:18 

Open (BR)  10.98  11:08  0.48  10:24  8.21  10:58 

Closed (BR)  4.93  20:00  0.22  20:00  15.86  20:00 

Table 37 – Peak gas concentration times (lounge open door scenarios) 
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It shows that the average peak CO2 level within the fire compartment, across all seven 

experiments, is 14%, with CO at 1.3% and O2 at 5%.  These peaks were typically recorded at 

between 7 and 13 min after ignition. 

 

Figure 65 and Figure 66 show the gas concentration curves for two of the experiments where 

the fire was in the lounge and the lounge door was open.  The first figure suggests that in 

Experiment 04, there was an incubation period of around 5 min; that the growth phase was 

between 5-7 min; that the fire was in the developed phase from 7-13 min before entering the 

decay phase.  This experiment involved a larger ventilation area of 2.0 m2 and the gas 

concentration curves are again typical of those seen within this type of combustion process. 

 

 
Figure 65 – Experiment 04 lounge gas concentrations 
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Figure 66 shows that in Experiment 08, there was an incubation period of around 4 min; that 

the growth phase was between 4-6 min; that the fire was in the developed phase from 6-13 

min before entering the decay phase.  This experiment involved a smaller ventilation area 0.5 

m2 and the gas concentration curves are again typical of those seen within this type of fire. 

 

In comparison to Experiment 04, the peak gas concentrations in Experiment 08 are lower but 

the developed stage of the fire seems to last longer which would be typical of a more vitiated 

fire, where there is a greater degree of control due to reduced ventilation. 

 

 
Figure 66 – Experiment 08 lounge gas concentrations 
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Figure 67 shows the CO:CO2 ratios observed during the experiments where the ventilation 

levels were greater at 2.0 m2. 

 

  
Figure 67 – Avg. CO:CO2 for given time periods / fire compartment (2 m2 vent) 
 

The CO:CO2 ratios are taken as averages over 4 times 3 minute periods.  The data used to 

produce Figure 67 and Figure 68 is shown in Table 38 below for comparison. 

 
Time Period Vent 2.0 m2 Vent 0.5 m2

3-6 min 0.10 0.16 

6-9 min 0.18 0.22 

9-12 min 0.18 0.37 

12-15 min 0.27 0.32 

Average 3-15 min 0.18 0.27 

Table 38 – CO:CO2 ratios 
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For the higher ventilation rates, the data shows a reduced CO:CO2 ratio which increases 

gradually with time.  For the lower ventilation rates, the data shows an increase in the overall 

CO:CO2 ratio, however, the ratio increases significantly between 3-12 min and then reduces 

slightly during the later phases when combustion becomes less ventilation-controlled as a 

result of a slower burning rate. 

 

  
Figure 68 – Avg. CO:CO2 for given time periods / fire compartment (0.5 m2 vent) 
 

The overall CO:CO2 ratio average across the 4 well-ventilated experiments between 3 to 15 

min is 0.18, whereas for the 3 less-ventilated experiments over the same period it is 0.27.  In 

summary, the experiments where ventilation was 2.0 m2 are able to burn more freely and 

produce larger volumes of smoke.  However, whilst the experiments with a lower ventilation 

area (0.5 m2) produce lower volumes of smoke as combustion is more tightly controlled, the 

smoke they produce has a higher ratio of the asphyxiant gas CO, compared to CO2. 
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4.3.4 Mass Loss Analysis 
 
Attempts were made to gather mass loss data for all 10 experiments conducted within the 

lounge.  Figure 69 shows that the initial mass of the fuel source is 63.3 kg as established in 

Section 3.7.2.  It also shows the mass loss during Experiment 03, indicating that during the 

first 11 min the fire consumed approximately 18 kgs of fuel, at this point the rate of fuel 

consumption increases and over the next 6 min (11 to 17) a further 31 kgs of fuel is consumed.  

Comparing the data with that in Figure 61, it can be seen that the temperature in the lounge 

rises sharply above 100°C after 11 min. 

 

 
Figure 69 – Experiment 03 mass loss corrected readings 
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4.3.5 Smoke Visibility 
 
During some of the experiments, the equipment used to gather smoke obscuration data was 

irreparably damaged and as a result, there is a limit to the amount of data that has been 

gathered.  This data shows a reasonable degree of reproducibility and demonstrates that 

visibility reduces to less than the 3 m threshold within the hallway at approximately 4 min 

after ignition.  At around 5 min, the same applies to the first floor landing; and the open 

bedroom achieves reduced visibility at around 8 min.  The average time at which the escape 

route becomes impassable is 4:39. 

 
Experiment 
Number 

Location 
Time to 3m 
visibility 

Exp.04 

Hallway  3:58 

Landing  5:05 

Open Bedroom  7:51 

Exp.07  Open Bedroom  7:41 

Exp.12 
Landing  4:54 

Open Bedroom  7:51 

Table 39 – Time for visibility of 3m (lounge door open scenarios) 
 

With respect to a traditional means of escape (from a bedroom, down the stairs and out the 

front door) this suggests that, with the fire compartment door being open to the remainder of 

the property, the time available for a successful escape is approximately 2½ min from when 

the alarm sounds. 
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Figure 70 – Experiment 02 room visibility conditions 
 

Figure 70 shows that once the fire takes hold the visibility within compartments which are 

open to the fire compartment reduces rapidly as smoke is transferred around the property. 

 

Again there is a time lag between different compartments being affected by smoke with the 

lag being approximately 1.5 min from the hallway to the landing and then a further 2 min 

from the landing in to the open door bedroom.  Unfortunately there is no data from within the 

closed door bedroom. 
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4.3.6 Video Analysis 
 
The left hand image in Plate 11 shows a video still taken from within the hallway looking 

directly towards the lounge (fire compartment) door which is held open.  The right hand image 

in the same plate is taken from a thermal imaging camera located in the same position as the 

video camera.  The temperature of 22°C shown in the bottom corner of the image is taken 

between the cross hairs and represents the temperature of the wall/doorframe.  Both of these 

images were taken at 10 seconds after ignition. 

 

The dark colouration of the ceiling in the video image is not smoke but is a soot deposit from 

an earlier experiment.  The light obscuration equipment can also be seen at the top of this 

image. 

 

 
Plate 11 – Images from within the hallway for Experiment 04 (10s after ignition) 
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Plate 12 – Images from within the hallway for Experiment 04 (4 min after ignition) 
 

In Plate 12 the same images are taken at 4 min after ignition and it can be seen that smoke is 

now being emitted from the fire compartment and that the temperature in the fire compartment 

doorway is unchanged at the level of the cross hairs.  The temperature of the smoke being 

emitted at this point is less than 100°C.  This is the time at which visibility is reduced to 3 m 

at head height.  It can be seen that visibility at lower levels remains in excess of this distance 

as the camera position is located at approximately 70 cm from floor level near to the base of 

the staircase, as seen in Plate 13. 

 

 
Plate 13 – Image showing the location of the video and TIC camera during Exp.04 
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Plate 14 shows that visibility within the hallway has almost completely been lost at 6 min 

after ignition, with the obscuration equipment recording a reading of 1 m.  Large volumes of 

black smoke are being produced at this point. 

 

 
Plate 14 – Image from within the hallway for Experiment 04 (6 min after ignition) 
 

Plate 15 shows the thermal image taken at 7 min after ignition with the smoke layer emitting 

from the fire compartment at temperatures approaching 200°C.  The cross hairs which appear 

at roughly two thirds of the way up the doorframe record a temperature of 83°C. 

 

 
Plate 15 – Image from within the hallway for Experiment 04 (7 min after ignition) 
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Plates 16 to 19 show the rate of fire development as seen in Experiments 07 and 03.  On the 

left hand side of each pair of images we see the fire developing during Exp.07 and on the right 

we see the fire during Exp.03, at 1 minute intervals.  As discussed earlier within this section, 

the fire development during Exp.03 seemed significantly slower than in the other six 

experiments within the lounge with the compartment door open. 

 

During the first 5 min of both experiments the fire develops at a relatively slow rate during 

the incubation period.  The images after 6 and 7 min then show a significant growth in the 

fire size for Exp.07 but this does not occur until around 11 min within Exp.03.  A comparison 

between each pair of images shows this disparity in fire growth and it is noted that the images 

for Exp.07 are typical for the remaining 5 experiments.  These observations are also seen 

within the temperature development curve for these experiments, see Figure 71. 

 

 
Figure 71 – Experiment 02 room visibility conditions 
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Plate 16 – Image of fire development Exp.07 and Exp.03 (1 to 3 min) 
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Plate 17 – Image of fire development Exp.07 and Exp.03 (4 to 6 min) 
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Plate 18 – Image of fire development Exp.07 and Exp.03 (7 to 9 min) 
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Plate 19 – Image of fire development Exp.07 and Exp.03 (10 to 12 min) 
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4.3.7 Asphyxiant Gas FED Analysis 
 
Equation 8 will again be used in the analysis of the asphyxiant gas concentration data to yield 

a time to lethality in the various rooms within the property.  The time to lethality is established 

for the more vulnerable members of the community at 1.0×FED and also for the healthy adult 

population at 2.5×FED. 

 

Table 40 details the outcomes of this analysis and again shows that there is a significant 

discrepancy between Experiment 03 and the other 6 experiments which all show good 

reproducibility.  Average figures are also shown within the table however these averages are 

based on the 6 experiments which showed good agreement and exclude the data from Exp.03.  

The standard deviation against these mean values is also given and does suggest that there is 

good agreement between the 6 experiments with standard deviations around 1 minute or less. 

 

It shows that vulnerable people will receive a fatal dose of asphyxiant gases within the fire 

compartment at between 5:45-9:45 min with an average of 7:31; this figure increases to 8:08 

when impacting upon a healthy adult.  On the landing, survivability times for healthy adults 

are increased to 9-10 min in the open bedroom this increases further to 9¾-11 ¾ min and in 

the closed bedroom survival times are much increased to in excess of 20 min. 

 

The relative contribution from both CO and HCN is considered for Experiment 04 in Section 

4.4.4. 
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Experiment 
Number 

Room  Time to 1.0xFED  Time to 2.5xFED 
Average Time 
to 1.0xFED 

Average Time 
to 2.5xFED 

Exp. 03 

Lounge 

12:56  13:29 

7:31 
 

(SD – 1:22) 

8:08 
 

(SD – 1:43) 

Exp. 04  7:05  7:11 

Exp. 07  8:20  9:28 

Exp. 08  5:43  6:01 

Exp. 10  9:42  10:44 

Exp. 12  7:03  7:13 

Exp. 13  7:09  8:10 

Exp. 03 

Landing 

13:55  14:32 

8:44 
 

(SD – 0:43) 

9:34 
 

(SD – 0:44) 

Exp. 04  8:39  9:24 

Exp. 07  9:16  10:03 

Exp. 08  7:45  8:45 

Exp. 10  9:48  10:48 

Exp. 12  8:28  9:05 

Exp. 13  8:28  9:18 

Exp. 03 

Open 
Bedroom 

14:29  15:07 

9:31 
 

(SD – 0:33) 

10:30 
 

(SD – 0:56) 

Exp. 04  9:18  9:58 

Exp. 07  ‐  ‐ 

Exp. 08  9:43  11:48 

Exp. 10  10:23  11:12 

Exp. 12  9:13  9:45 

Exp. 13  8:58  9:48 

Exp. 03 

Closed 
Bedroom 

‐  ‐ 

> 20 min  > 20 min 

Exp. 04  > 20 min (0.05)  > 20 min (0.05) 

Exp. 07  > 20 min (0.87)  > 20 min (0.87) 

Exp. 08  > 20 min (0.77)  > 20 min (0.77) 

Exp. 10  18:09  > 20 min (1.84) 

Exp. 12  > 20 min (0.08)  > 20 min (0.08) 

Exp. 13  > 20 min (0.92)  > 20 min (0.92) 

Table 40 – Smoke FED time to lethality (lounge open door scenarios) 
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Figure 72 shows the data for Experiment 04, where the development of the asphyxiant gas 

FED curves can be seen.  This graph shows that asphyxiant gases have a relatively minor 

impact upon human safety within the first 6 min, whilst the fire is in its incubation period.  At 

around 7 min the build-up of the asphyxiant gases reaches fatal levels within the lounge (fire 

compartment) and the transition from 1.0×FED to 2.5×FED occurs almost instantaneously 

over a period of only 6 seconds. 

 

Fatal levels of toxic smoke are seen on the landing at around 8½ min with another 40 seconds 

before survivability is threatened within the open door bedroom.  Within the closed door 

bedroom there is little sign of toxic smoke levels until around 18 min with the FED reaching 

0.05 at twenty min. 

 

 
Figure 72 – Experiment 04 asphyxiant gas FED development 
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Figure 73 to Figure 76 show the FED development curves for all individual experiments 

within each of the rooms where FED data was gathered.  Within Figure 75, the data for Exp.07 

is omitted and within Figure 76 the data for Exp.03 is also omitted, both due to corrupted data 

from unrealistic gas concentrations. 

 

These figures also show that there is good reproducibility in all experiments except for 

Exp.03, where the incubation period was inexplicably long.  The asphyxiant gas 

concentrations in all 7 experiments are seen to be low during the early stages of fire growth 

and then the production of these gases and hence the FED curves increase exponentially after 

the early incubation period.  It is observed that the transition from 1.0×FED to 2.5×FED is 

typically between 30-60 seconds in all rooms which are open to the fire compartment.  In the 

bedroom with the closed door, it can be seen that this transition is significantly slower, with 

only one vulnerable person fatality being recorded. 

 

As a result of the exponential growth of these fires, after their incubation period, there is only 

a small time difference between the survivability of the more vulnerable people and those 

who are healthy adults.  Details of these differences are given in Table 41, where it can be 

seen that the average difference between 1.0×FED and 2.5×FED within the fire compartment 

is 37 seconds, this extends to 50 seconds on the landing and to 59 seconds in the open door 

bedroom.  This increase within the closed door bedroom is significantly greater. 

 

Room  Avg. Time from 1.0 to 2.5 FED 

Lounge  0:37 

Landing  0:50 

Open Bedroom  0:59 

Closed Bedroom  3‐4 min 

Table 41 – Time difference between 1.0 and 2.5 FED (lounge open door scenarios) 
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Figure 73 – Lounge fire door open asphyxiant gas FED development (lounge) 

 

 
Figure 74 – Lounge fire door open asphyxiant gas FED development (landing) 
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Figure 75 – Lounge fire door open asphyxiant gas FED development (open bed) 

 

 
Figure 76 – Lounge fire door open asphyxiant gas FED development (closed bed) 
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Table 42 shows the average time difference for the two FED thresholds between one room 

and the next.  For vulnerable persons, fatality within the landing occurs 1:13 later than the 

lounge, 47 seconds later in the open door bedroom and then the closed door bedroom remains 

largely tenable.  Again this shows the value of a closed door between the fire and an occupant. 

 

Rooms 
Average Lag 
(1.0 × FED) 

Average Lag 
(2.5 × FED) 

Lounge to Landing  1:13  1:26 

Landing to Open Bedroom  0:47  0:56 

Table 42 – Average time lag between rooms (lounge open door scenarios) 
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4.3.8 Heat FED Analysis 
 
As a result of the increased fuel loading within the lounge fire scenarios, significantly more 

heat is produced during combustion and increased temperatures within all rooms is observed, 

when compared with the kitchen fires.  As a result, heat plays a more significant role with 

regards to the impact that the fire has on the occupants of the property.  The time taken for 

heat to lead to the occupants of the building being fatally exposed are given in Table 43, with 

the average times given for both thresholds.  The average times do not include the data 

obtained during Experiment 03 as a result of its significantly slower fire development. 

 

This table shows that heat leads to fatal conditions within the lounge after around 7 min.  

Unlike the fires located within the kitchen, there is also enough heat generated to cause 

fatalities on the landing, with these occurring at in excess of 13 min on average.  Conditions 

within the open door and closed door bedrooms are survivable for more than 20 min from the 

perspective of heat exposure. 

 

The data for the 6 experiments where the fire developed similarly shows a reasonable 

agreement within the lounge as indicated by the standard deviations.  The data gathered on 

the landing shows an increase in the spread of the data points.  This is probably as a result of 

the differing sets of ventilation conditions, which may have a reduced impact within the fire 

compartment. 
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Experiment 
Number 

Room  Time to 1.0xFED  Time to 2.5xFED 
Average 
Time to 
1.0xFED 

Average 
Time to 
2.5xFED 

Exp. 03 

Lounge 

11:37  11:57 

6:48 
 

(SD – 1:07) 

7:08 
 

(SD – 1:07) 

Exp. 04  7:06  7:28 

Exp. 07  7:40  8:00 

Exp. 08  5:28  5:45 

Exp. 10  8:11  8:30 

Exp. 12  6:51  7:14 

Exp. 13  5:31  5:53 

Exp. 03 

Landing 

15:42  > 20 min (2.05) 

12:50 
 

(SD – 4:07) 
> 20 min 

Exp. 04  14:02  > 20 min (1.84) 

Exp. 07  12:05  > 20 min (1.23) 

Exp. 08  7:28  9:49 

Exp. 10  11:37  16:06 

Exp. 12  > 20 min (0.80)  > 20 min (0.80) 

Exp. 13  11:46  > 20 min (1.53) 

Exp. 03 

Open 
Bedroom 

> 20 min (0.27)  > 20 min (0.27) 

> 20 min  > 20 min 

Exp. 04  > 20 min (0.38)  > 20 min (0.38) 

Exp. 07  > 20 min (0.28)  > 20 min (0.28) 

Exp. 08  > 20 min (0.95)  > 20 min (0.95) 

Exp. 10  > 20 min (0.47)  > 20 min (0.47) 

Exp. 12  > 20 min (0.19)  > 20 min (0.19) 

Exp. 13  > 20 min (0.31)  > 20 min (0.31) 

Exp. 03 

Closed 
Bedroom 

> 20 min (0.04)  > 20 min (0.04) 

> 20 min  > 20 min 

Exp. 04  > 20 min (0.06)  > 20 min (0.06) 

Exp. 07  > 20 min (0.06)  > 20 min (0.06) 

Exp. 08  > 20 min (0.05)  > 20 min (0.05) 

Exp. 10  > 20 min (0.05)  > 20 min (0.05) 

Exp. 12  > 20 min (0.06)  > 20 min (0.06) 

Exp. 13  > 20 min (0.05)  > 20 min (0.05) 

Table 43 – Heat FED time to lethality (lounge open door scenarios) 
 

For Experiment 04, the data shown has been presented in a graphical form within Figure 77.  

This shows the development of the fractional effective dose as a function of time.  Whilst the 

curve for heat within the fire compartment increases exponentially, the FED curves for rooms 

outside of the fire compartment are somewhat flatter when compared to those presented for 

asphyxiant gas FED in Figure 72. 
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Figure 77 – Experiment 04 heat FED development 
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4.3.9 FED Conclusion 
 
The data gathered during these experiments demonstrates that there are many factors which 

can influence fire development.  Whilst every effort was made to accomplish reproducibility 

between experiments, this is not always achievable.  Experiment 03 is clearly seen to develop 

at a significantly slower rate than the other 6 experiments, and shows experimental variation.  

Where it was appropriate to do so, the results from this experiment have been omitted. 

 

The two different ventilation areas show some differences between experiments, however, 

where it was expected that differences would be observed, this is not always the case.  To a 

greater extent, the difference between the ventilation areas was masked by the residual air 

contained within the remainder of the property, which the fire can access as a result of the fire 

compartment door being open.  In the experiments where ventilation was 2.0 m2 the quantities 

of heat and smoke produced were higher however, where the ventilation was 0.5 m2, the 

CO:CO2 ratio was higher, particularly when the fire was well-developed.  The time taken to 

reach FED thresholds is relatively short in all rooms which are open to the fire compartment 

and as such, the area of ventilation was not significantly influential in determining the hazard. 

 

In comparison with the kitchen fires, discussed in Section 4.1.1, these fires were able to 

consume a greater amount of fuel and therefore to produce more heat and smoke.  The fuel 

also contains nitrogen and it was seen that HCN was produced during all 7 experiments.  

These larger fires and the fact that HCN was produced contributed significantly towards the 

rate at which a FED was attained.  Table 44 shows the time taken for lethal conditions to be 

created within the four compartments, for each of the experiments.  It shows lethal effects 

from heat in ‘orange’ and lethal effects resulting from asphyxiant gases in ‘grey’. 
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Experiment 
Number 

Room 
Time to 1.0 x 

FED 
Time to 2.5 x 

FED 

Exp. 03 

Lounge 

11:37  11:57 

Exp. 04  7:05  7:11 

Exp. 07  7:40  8:00 

Exp. 08  5:28  5:45 

Exp. 10  8:11  8:30 

Exp. 12  6:51  7:13 

Exp. 13  5:31  5:53 

Exp. 03 

Landing 

13:55  14:32 

Exp. 04  8:39  9:24 

Exp. 07  9:16  10:03 

Exp. 08  7:28  8:45 

Exp. 10  9:48  10:48 

Exp. 12  8:28  9:05 

Exp. 13  8:28  9:18 

Exp. 03 

Open 
Bedroom 

14:29  15:07 

Exp. 04  9:18  9:58 

Exp. 07  ‐  ‐ 

Exp. 08  9:43  11:48 

Exp. 10  10:23  11:12 

Exp. 12  9:13  9:45 

Exp. 13  8:58  9:48 

Exp. 03 

Closed 
Bedroom 

‐  ‐ 

Exp. 04  > 20 min (0.05)  > 20 min (0.05) 

Exp. 07  > 20 min (0.87)  > 20 min (0.87) 

Exp. 08  > 20 min (0.77)  > 20 min (0.77) 

Exp. 10  18:09  > 20 min (1.84) 

Exp. 12  > 20 min (0.08)  > 20 min (0.08) 

Exp. 13  > 20 min (0.92)  > 20 min (0.92) 

Table 44 – Heat/asphyxiant gas FED time to lethality (lounge open door scenarios) 
 

It can be seen that heat is slightly more hazardous than asphyxiant gases within the fire 

compartment, with lethality as a result of heat exposure being likely to occur approximately 

1 minute before lethality due to asphyxiant gases.  This outcome differs from the findings of 

D. Purser [23] although these experiments were conducted with a greater degree of ventilation 

to the fire compartment.  As a result, the fire is able to develop at an increased rate, producing 

more heat.  
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Outside the fire compartment, the asphyxiant gases present a significantly greater hazard than 

exposure to heat as temperatures are much reduced. 

 

Figure 78 and Table 45 show the timeline of events during these experiments with the average 

being taken from the 6 experiments which showed reproducible data, and omitting that from 

Experiment 03.  This shows that smoke was detected in the hallway at 2:17 after ignition and 

that 2:43 later (5:00 after ignition) the internal escape route becomes impassable due to 

reduced visibility.  When compared with the kitchen fire scenarios, the window for self-

evacuation is much smaller at less than 3 min on average within these experiments, compared 

to 9 min. 

 

 
Figure 78 – Lounge fire door open fire survival timeline 
 

  

Lounge
(Heat)

Landing
(Smoke)

Open Bedroom
(Smoke)

2:17

1:48 2:43

1:56

0:47



R.Walker PhD Thesis  4 – Data Analysis 

 

 
206 

Lethal conditions are then observed in the fire compartment at 6:48 as a result of heat; at 8:44 

on the landing as a result of smoke and at 9:31 in the open door bedroom also as a result of 

smoke.  Conditions within the closed door bedroom remain tenable for the duration of all 

experiments with respect to the healthy adult population and in only one of the experiments 

are lethal conditions observed with respect to the more vulnerable population. 

 
Event  Time 

Ignition  0:00 

Alarm Actuation  2:17 

Visibility Lost  5:00 

Lethality (Fire Compartment)  6:48 

Lethality (Landing)  8:44 

Lethality (Open Bedroom)  9:31 

Lethality (Closed Bedroom)  > 20:00 

Table 45 – Lethality event / time analysis (lounge fire door open scenarios) 
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4.4 Detailed Analysis of Experiment 04 
 
In analysing the data within these experiments, it becomes apparent that a significant amount 

of data has been captured within Experiment 04.  As a result, it is possible to complete a more 

detailed analysis of this particular experiment in an attempt to establish any connections or 

correlations that may exist. 

 

4.4.1 Fire Development 
 
Figure 79 to Figure 84 shows a visual image of the fire as it develops and is complemented 

by a graph which shows the temperature and gas concentration curves at the point where the 

image was taken.  Temperature data is recorded at 150 cm and gas concentration are at 160 

cm above floor level.  These figures clearly show the incubation period which covers the 

initial 5 min after which point there is a sharp increase in the rate at which the fire develops. 

 

The most significant increase in fire development occurs between 6 and 7 min, where 

temperatures are seen to increase and there is a significant change in the gas concentrations.  

During the period between 7 and 8 min, it can be seen that the lack of ventilation seems to 

control the fire and it shifts into the steady state or ventilation-controlled phase. 
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Figure 79 – Experiment 04 – temperature/gas concentrations vs time (3 min) 
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Figure 80 – Experiment 04 – temperature/gas concentrations vs time (4 min) 
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Figure 81 – Experiment 04 – temperature/gas concentrations vs time (5 min) 
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Figure 82 – Experiment 04 – temperature/gas concentrations vs time (6 min) 
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Figure 83 – Experiment 04 – temperature/gas concentrations vs time (7 min) 
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Figure 84 – Experiment 04 – temperature/gas concentrations vs time (8 min) 
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4.4.2 Smoke Detector Actuation Times 
 
In order to establish if there is a correlation between the times at which smoke is detected by 

an automatic device and the temperature at ceiling level, this data is compared across the four 

compartments, where it is available.  The results of this analysis are given in Table 46 and 

show that there is no apparent correlation between the two.  In the fire compartment there is 

a rise in temperature of around 10°C at the point where the smoke detector actuates, but more 

remotely from the fire, the rise in temperature is considerably lower.  This shows that the fire 

effluent cools significantly as it moves.  Since the flow is convective, the loss of heat will 

slow the effluent movement. 

 

This phenomenon is consistent with travel away from the fire to the point where there is only 

a 0.1°C temperature increase at the point of actuation in the most remote compartment.  This 

demonstrates that although the fire plume is diluted to the point where temperatures are low, 

the devices remain sensitive enough to detect the smoke. 

 

Room 
Detector 

Actuation Time 

Ceiling 
Temperature 

(°C) 

Temperature 
above ambient 

(°C) 
Lounge  01:04  41.9  9.7 

Landing  02:53  31.1  1.4 

Open Bedroom  03:41  30.8  0.4 

Closed Bedroom  07:50  30.9  0.1 

Table 46 – Exp. 04 – comparison of detector actuation times and ceiling temp. 
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4.4.3 Heat and Smoke FED Development 
 
Data gathered, shows that lethal exposure to heat and to asphyxiant gas occurs at roughly the 

same time within the fire compartment, however, in more remote locations, this is not the 

case.  Figure 85 shows all eight of the FED calculations made within Experiment 04 with both 

the heat and asphyxiant gas FEDs across the four different rooms.  It shows that the FED from 

asphyxiant gases, within those compartments which are open to the fire, develop rapidly with 

a slight lag as the smoke layer travels around the property.  In contrast, the FED from heat 

develops at a very different rate outside of the fire compartment and demonstrates that heat is 

much less hazardous to people where they are situated more remotely from the fire. 

 

 
Figure 85 – Experiment 04 heat and smoke FED development 
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This data is explored further within Figure 86 to Figure 88, where the two FED curves are 

presented along with the temperature profile within the three compartments.  The obvious 

difference between these three figures is the peak temperatures, being around 500°C in the 

fire compartment, 120°C on the landing and 70°C within the open bedroom.  These 

temperature differences obviously occur as a result of the smoke plume being diluted as there 

are turbulent effects between the hot smoke layer and the cooler layer of residual air.  Whilst 

this dilution has a significant impact on heat FED, the impact that it has on asphyxiant smoke 

FED is much less.  This is as a result of the high concentrations of asphyxiant gases that are 

produced during combustion. 

 

 
Figure 86 – Experiment 04 temperature vs FED (lounge) 
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Figure 87 – Experiment 04 temperature vs FED (landing) 
 

 

 
Figure 88 – Experiment 04 temperature vs FED (open bedroom) 
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4.4.4 Asphyxiant Smoke FED Development of Individual Gases 
 
Figure 89 shows the individual FED development curves for CO (Red) and HCN (Green) as 

well as the additive curve for CO and HCN (Blue), within the fire compartment during 

Experiment 04.  This chart only shows the curves between 6 and 8 min to better demonstrate 

how each of the two gases contribute towards the additive asphyxiant effect. 

 

It shows that in the early stages of fire development (up to 7 min), where the concentrations 

of both asphyxiant gases are low, that the combined curve follows the CO curve well.  After 

7 min the fire starts to develop more rapidly and the concentrations of the two asphyxiant 

gases increases.  Equation 8 includes an exponential factor for exposure to HCN and as a 

result the HCN curve starts to take over from the CO curve and contributes more towards the 

total asphyxiant exposure. 

 

 
Figure 89 – Experiment 04 asphyxiant gas FED (lounge all gases) 
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From 7 min onwards, the green and blue curves track each other well and from this point 

onwards the greatest hazard to exposed people becomes HCN.  On the basis of the FED 

calculations presented Section 4.3.8, it is seen that at 1.0×FED, 28.2% of the fractional 

effective dose comes as a result of exposure to CO and the remaining 71.8% comes as a result 

of exposure to HCN.  Clearly HCN represents a significant portion of the hazard. 

 

 
Figure 90 – Experiment 04 asphyxiant gas FED (landing all gases) 
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This is also demonstrated in the percentage contribution of each of the asphyxiant gases, 

where it can be seen that at 1.0×FED, 42.4% of the fractional effective dose comes as a result 

of exposure to CO and the remaining 57.6% comes as a result of exposure to HCN.  At lower 

concentrations of both gases the impact of CO increases. 

 

 
Figure 91 – Experiment 04 asphyxiant gas FED (open bedroom all gases) 
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The percentage contribution of each of the two asphyxiant gases during Experiment 04, is 

presented in Table 47 at both 1.0×FED and 2.5×FED. 

 

Room 

1.0 x FED  2.5 x FED 

Percentage CO 
contribution 

Percentage HCN 
contribution 

Percentage CO 
contribution 

Percentage HCN 
contribution 

Lounge  28.2%  71.8%  24.5%  75.5% 

Landing  42.4%  57.6%  37.3%  62.7% 

Open Bedroom  40.9%  59.1%  33.8%  66.2% 

Table 47 – Experiment 04 – contribution from individual gases towards FED 
 

The figures which are charted and tabulated within this section bare a similarity in both their 

shape and timing to graphs presented earlier in this thesis, taken from other experimental 

works.  They bear similar results to those presented by Purser in Figure 21 and Figure 22, in 

Section 1.8.4. 
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4.5 Analysis of Individual Experiments – Group 3 
 
This section of the thesis gives a detailed analysis of those experiments which involve a fire 

in the lounge and where the lounge door is in the closed position.  These experiments have 

been conducted to investigate the effect that under-ventilation has on the asphyxiant gas 

concentrations and to make comparisons with Group 2 so that the value of a closed door can 

be assessed. 

 

The grouping covers Experiments 05, 06, 09 and 14, with all but one of these experiments 

involving the combustion of a sofa only.  Within Experiment 14 there are additional fuel 

packages inside the fire compartment, such as carpet, curtains and further pieces of furniture.  

Due to time constraints with the availability of the property and the large-scale testing, it was 

not possible to conduct Experiment 06. 

 

In addition, whilst conducting Experiment 14 the compartment floor between the lounge and 

the closed door bedroom was breached, with evidence suggesting that this occurred at around 

12 min after ignition.  As a result there is an obvious discrepancy with respect to the gas 

concentrations and after 12 min, the gas concentrations in the closed bedroom reflect the 

ceiling failure, which, with normal building practices, would only be expected after a repeated 

series of fires.  Therefore, the analysis within this section of the thesis will focus on 

Experiments 05 and 09 and on data observed from the early stages of Experiment 14. 
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4.5.1 Smoke Detector Analysis 
 
Each individual actuation time and the averages for each of the alarm locations are given in 

Table 48.  Smoke detection within the fire compartment occurs on average at around 2:08, 

however, it is not typical for smoke detectors to be located within this type of compartment.  

Smoke detectors are typically located within the hallway and landing and these actuated on 

average at 6:08 and 9:10, respectively.  Unfortunately, it was not possible to obtain smoke 

detector actuation times in every room for every experiment due to time constraints and heat 

damage to equipment and cabling. 

 

Room  Detector Type  Exp. 05  Exp. 09  Exp. 14 
Avgerage 
mm:ss 

Lounge 
Low Sens.  3:00  2:01  2:05 

2:08 
High Sens.  ‐  1:46  1:50 

Hallway 
Low Sens.  6:50  6:26  6:37 

6:08 
High Sens.  6:50  4:01  6:05 

Landing 
Low Sens.  ‐  9:01  9:31 

9:10 
High Sens.  ‐  8:42  9:26 

Open 
Bedroom 

Low Sens.  15:53  11:23  ‐ 
12:34 

High Sens.  ‐  10:27  ‐ 

Closed 
Bedroom 

Low Sens.  ‐  ‐  ‐ 
‐ 

High Sens.  ‐  ‐  ‐ 

Table 48 – Smoke detector actuation times (lounge closed door scenarios) 
 

The focus was to get data for smoke detectors within the hallway and landing as these would 

be used in the assessment of the timelines.  A significant number of data points have been 

gathered in these locations and the results show reasonable reproducibility.  Figure 92 gives 

a visual representation of the average times given in the table and also gives an indication of 

the rate at which smoke is transported from one room to the next, within the property. 

 
  



R.Walker PhD Thesis  4 – Data Analysis 

 

 
224 

 

 
Figure 92 – Average smoke detector actuation times (lounge fires closed door) 
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Figure 93 – Lounge closed door temperature profiles (lounge at 150 cm) 
 

 

 
Figure 94 – Experiment 05 temperature profiles (at 150 cm) 
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Figure 94 shows the temperature profiles at each of the four sampling points at 150 cm above 

floor level for Exp.05.  When compared with Figure 63, where the fire compartment door was 

open during Exp.04, significantly less heat was allowed to travel into the other rooms within 

the property as a result of the fire compartment door being closed. 

 

It shows that the maximum temperature within the fire compartment was 764°C.  Figure 95 

shows the same temperature-time variation as Figure 94 but focuses on the lower temperature 

range.  It shows that the maximum temperature on the landing was 43°C; in the open door 

bedroom it was 37°C and in the closed door bedroom it was 34°C.  Ambient temperatures 

immediately prior to ignition were approximately 31°C and so the temperature rises outside 

of the fire compartment are minimal. 

 

 
Figure 95 – Experiment 05 temperature profiles (at 150 cm) 
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The data shown in Figure 64 helped to identify the neutral plane between the hot upper layer 

and the cooler lower layer for Experiment 04, with this being estimated at 120-150 cm.  A 

similar analysis is conducted for Experiment 14 using Figure 96, which shows that the four 

thermocouples in the upper part of the room (150-240 cm) show reasonable agreement, with 

slight degradation, in temperature.  The lower three thermocouples (30-90 cm) also show a 

similar agreement.  This suggests that the neutral plane between the hot upper layer and the 

cooler lower layer appears to occur at approximately 120 cm, in Experiment 14.  The position 

of the neutral plane at 120 cm is particularly noticeable between 8 and 13 min. 

 

The neutral plane is less clearly defined as the fire in this experiment moves to the ventilation-

controlled phase at around 12 min. 

 

 
Figure 96 – Experiment 14 lounge temperature profiles (at various heights) 
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In contrast, the temperature profiles within Experiment 09 seem to be much more evenly 

spread out, which suggests that the separation between the upper and lower layers is less well 

defined.  As a result of the relatively small opening within this room, allowing O2 into the fire 

compartment, evidence suggests that fire development is heavily retarded and that the flow of 

air/smoke into and out of the fire compartment is somewhat reduced.  As a result, the smoke 

layer appears to be cooler but it also appears to drop down to lower levels. 

 

The temperature difference between the 240 cm and the 60 cm thermocouples, during the 

growth phase of the fire in Experiment 14 is approximately 375°C.  The same thermocouples 

in Experiment 09 measure a temperature difference of around 200°C, which also suggests that 

the upper layer is thicker during Experiment 09, where the ventilation area was only 0.5 m2.  

In Figure 97 the thermocouple readings at 30 cm are omitted due to erroneous results and 

again the neutral plane is less well defined where the fire is ventilation-controlled. 

 

 
Figure 97 – Experiment 09 lounge temperature profiles (at various heights) 
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4.5.3 Gas Concentrations 
 
Table 49 shows the peak gas concentrations measured during Experiments 05, 09 and 14 for 

CO2, CO and O2.  For CO2 and CO this is an upper concentration peak and, as oxygen 

depletion is being considered, for O2 it is a lower concentration peak. 

 

Experiment 
Number 

Room 
CO2 

Peak (%)
Time 

CO Peak 
(%) 

Time 
O2 Peak 
(%) 

Time 

Exp.05 

Lounge  16.30  10:52  2.62  10:25  0.21  10:28 

Landing  1.16  12:01  0.12  12:14  19.46  11:44 

Open (BR)  0.96  13:09  0.10  13:03  19.69  13:06 

Closed (BR)  ‐  ‐  ‐  ‐  ‐  ‐ 

Exp.09 

Lounge  16.03  12:54  1.01  12:50  2.67  12:54 

Landing  0.51  12:52  0.03  12:58  20.36  12:48 

Open (BR)  0.20  12:58  0.02  12:54  20.64  12:59 

Closed (BR)  ‐  ‐  ‐  ‐  ‐  ‐ 

Exp.14 

Lounge  13.59  13:00  2.52  13:04  4.02  12:58 

Landing  ‐  ‐  ‐  ‐  ‐  ‐ 

Open (BR)  ‐  ‐  ‐  ‐  ‐  ‐ 

Closed (BR)  ‐  ‐  ‐  ‐  ‐  ‐ 

Table 49 – Peak gas concentration times (lounge closed door scenarios) 
 

When graphs of the gas concentrations are produced for all three experiments, there is 

evidence to suggest that smoke has been transmitted directly from the fire compartment into 

the closed door bedroom located directly above it.  The amount of leakage is minor within 

Experiments 05 and 09.  Whilst this is a consistent outcome and is probably resultant of 

additional pressures in the fire compartment as a result of the lounge door being closed, it is 

believed that this situation is unrealistic.  The damage to the compartment floor between these 

two rooms has only occurred as a result of repeat testing and is not expected to occur in a 

building where this was the first fire.  As such these erroneous results have been omitted.  The 

gas concentrations within the landing and the open door bedroom for Experiment 14 also 

yields erroneous results. 
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It shows that the average peak CO2 level within the fire compartment, across all three 

experiments is 15%, with CO at 2.0% and O2 at 2%.  These peaks were typically recorded at 

between 11 and 13 min after ignition.  When comparing this data with that of Table 37 for the 

open door scenarios, it can be seen that fire development is slower when the fire is restricted 

to obtaining O2 via the external vent direct to the fire compartment.  It also shows that whilst 

the peak CO2 was slightly increased, the peak CO was notably increased which also suggests 

that the access to O2 within this group of experiments was much reduced. 

 

Figure 98 suggests that in Experiment 09, there was an incubation period of around 5 min; 

that the growth phase was between 5-8 min; that the fire was in the developed phase from 8-

18 min before entering the decay phase.  This experiment involved a smaller ventilation area 

0.5 m2 and the gas concentration curves are typical of those seen within this type of 

combustion process. 

 

 
Figure 98 – Experiment 09 lounge gas concentrations 
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Figure 99 shows that in Experiment 14, there was an incubation period of around 6 min; that 

the growth phase was between 6-9 min; that the fire was in the developed phase from 9-13 

min before entering the decay phase.  This experiment involved a larger ventilation area 2.0 

m2 and the gas concentration curves are again typical of those seen within this type of 

combustion process. 

 

In comparison Experiment 09, the developed phase in Experiment 14 lasts for a shorter period 

of only 4 min when compared with the 10 min developed phase in this experiment.  This is 

again typical of a more vitiated fire, where there is a greater degree of control due to reduced 

ventilation in Experiment 09. 

 

 
Figure 99 – Experiment 14 lounge gas concentrations 
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4.5.4 Smoke Visibility 
 
During some of the experiments, the equipment used to gather smoke obscuration data was 

irreparably damaged and as a result, there is a limit to the amount of data that has been 

gathered.  Only two reliable recordings of visual obscuration were made, both of which were 

on the landing, with the results presented in Table 50.  The average time at which the escape 

route becomes impassable is 12:34. 

 
Experiment 
Number 

Location 
Time to 3m 
visibility 

Exp.05  Landing  13:22 

Exp.09  Landing  11:46 

Table 50 – Time for visibility of 3m (lounge door closed scenarios) 
 

With respect to the opportunity for occupant self-evacuation, this suggests that with the fire 

compartment door being closed to the remainder of the property, the time available for a 

successful escape is approximately 6½ min from when the alarm sounds. 
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4.5.5 Video Analysis 
 
The images presented in Plate 20 and Plate 21 show the fire development for Experiment 05 

on the left, compared to Experiment 09 on the right.  It can be seen that the smoke layer within 

Experiment 09 (right) drops down quickly and fire development is being severely retarded at 

6-7 min as a result of the lack of O2.  At 9 min from ignition, the sofa within Experiment 05 

is fully alight and burning freely as a result of sufficient air and oxygen.  By comparison, the 

fire in Experiment 09 is somewhat smothered. 

 

 
Plate 20 – Images from within the lounge for Exp.05 (left) and Exp.09 (right) 
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Plate 21 – Images from within the lounge for Exp.05 (left) and Exp.09 (right) 
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Plate 22 shows an image of a developed fire at 10 min after ignition, from Experiment 14, 

where there is additional fuel loading within the fire compartment.  It can be seen that at this 

stage of the experiment it is only really the sofa that is contributing towards the fire, the 

remaining combustible materials are starting to pyrolyse at this point and a small amount of 

pyrolysed fuel can be seen leaving the armchair.  Other fuel packages include a wooden table 

and chair and some carpet. 

 

 
Plate 22 – Image from within the lounge for Experiment 14 
 

Plate 23 shows three images also taken during Experiment 14 and these show the onset of 

flashover.  In the first image (13:23) it can be seen that the carpet has shrunk due to heat 

exposure and that the carpet and armchair are pyrolysing heavily.  The second image (13:24), 

taken 1 second later, shows an initial flame as the carpet reaches its auto-ignition temperature.  

The third image (13:28) shows that over a period of 5 seconds the fuel packages on the right 

hand side of the image have transformed from pyrolysis with no flaming, to being fully 

involved in fire.  It is noteworthy that this has taken nearly 13½ min and that flashover is 

occurring a significant time after ignition.  
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Plate 23 – Images from within the lounge for Experiment 14 
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4.5.6 Asphyxiant Gas FED Analysis 
 
Equation 8 will again be used in the analysis of the asphyxiant gas concentration data to yield 

a time to lethality in the various rooms within the property.  The time to lethality is established 

for the more vulnerable members of the community at 1.0×FED and also for the healthy adult 

population at 2.5×FED. 

 

Table 51 details the outcomes of this analysis.  With the evidence of minor smoke leakage 

from the fire compartment into the closed door bedroom (during Experiments 05 and 09) and 

having considered all of the gas concentration data against what would be reasonable within 

these experiments, it has only been possible to produce an FED analysis within the fire 

compartment and on the landing.  Average figures are also shown and this data does show 

quite clearly that there is a significant delay in the asphyxiant gases reaching the 

compartments outside of the lounge, as a result of the lounge door being closed. 

 

Experiment 
Number 

Room 
Time to 
1.0xFED 

Time to 
2.5xFED 

Average Time 
to 1.0xFED 

Average Time 
to 2.5xFED 

Exp. 05 

Lounge 

9:11  10:04 
8:42 

(SD – 0:41) 
9:18 

(SD – 1:06) 
Exp. 09  8:13  8:31 

Exp. 14  12:44  12:58 

Exp. 05 

Landing 

> 20 min (0.22)  > 20 min (0.22) 

18:36  19:32 Exp. 09  18:36  19:32 

Exp. 14   ‐    ‐  

Exp. 05 
Open 

Bedroom 

 ‐    ‐  

19:16  N/A Exp. 09  19:16  > 20 min (2.48) 

Exp. 14   ‐    ‐  

Exp. 05 
Closed 

Bedroom 

> 20 min (0.22)  > 20 min (0.22) 

N/A  N/A Exp. 09   ‐    ‐  

Exp. 14   ‐    ‐  

Table 51 – Smoke FED time to lethality (lounge closed door scenarios) 
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The data gathered during Experiment 14 also shows that significant amounts of smoke leaked 

from the fire compartment into the closed bedroom and it is reasonable to suggest that this 

has contributed towards the extended times to FED seen in this experiment.  As such, all of 

the average and standard deviation data ignores the figures gathered during this experiment. 

 

Ideally, more data points would have been collected from within this grouping.  With regards 

to tenability on the landing, there are two data points for each FED threshold, as a result of a 

lack of a greater amount of data the lowest time is taken to give a margin of safety. 

 

It shows that vulnerable people will receive a fatal dose of asphyxiant smoke within the fire 

compartment at between 8-9 min with an average of 8:42; this figure increases to 9:18 when 

impacting upon a healthy adult.  On the landing, survivability times for more vulnerable 

people are increased to 18½ min; in the open bedroom this increases further to 19¼ min and 

in the closed bedroom survival times are much increased to well in excess of 20 min. 

 

When compared with the data from Section 4.3.7, it is obvious that the landing and the open 

door bedroom are afforded a significantly greater degree of protection from having the fire 

compartment door closed.  Tenability on the landing is extended for a period of approximately 

10 min, when compared with the ‘lounge door open’ experiments. 
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Figure 100, shows the FED development curves for each of the three fires, within the lounge.  

Evidence suggests that the breach in the compartment floor during Experiment 14 occurred 

at around 12 min and the green curve would support this evidence although the line seems to 

flatten out at closer to 11:00.  Otherwise, there seems to be a reasonable agreement between 

the other two experiments and the transition from a low FED through the two thresholds 

occurs over a relatively small timeframe. 

 

 
Figure 100 – Lounge fire door closed asphyxiant gas FED development (lounge) 
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Figure 101 shows the FED development curves for asphyxiant gases within the separate 

compartments during Experiment 09.  When these curves are compared with those given in 

Figure 72 for Experiment 04 with the open lounge door, it is seen that the 3 curves are much 

closer together.  For Experiment 04, the time difference between loss of tenability within the 

fire compartment and in the open bedroom is approximately 1:30, however, with Experiment 

09, the difference in time is around 11 min. 

 

 
Figure 101 – Experiment 09 asphyxiant gas FED development 
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4.5.7 Heat FED Analysis 
 
Again, with the increased fuel loading within the lounge fire scenarios, significantly more 

heat is produced during combustion and increased temperatures particularly within the fire 

compartment are observed.  As a result, heat plays a more significant role with regards to the 

impact that the fire has on the occupants of the property.  The time taken for heat to lead to 

the occupants of the building being fatally exposed are given in Table 52, with the average 

times given for both thresholds. 

 

It shows that heat leads to fatal conditions within the lounge after around 8½ min.  As a result 

of the protection afforded by the closed lounge door, heat is not expected to have an impact 

on the occupants of any of the rooms outside of the fire compartment, within the 20 minute 

timeframe of the experiments.  The data for the 3 experiments shows a reasonable agreement 

within the lounge as indicated by the standard deviations.  The closed bedroom FED data for 

Experiment 14 also confirms the direct transfer of smoke from the lounge. 

 

Experiment 
Number 

Room 
Time to 
1.0xFED 

Time to 
2.5xFED 

Average Time 
to 1.0xFED 

Average Time 
to 2.5xFED 

Exp. 05 

Lounge 

8:26  8:41 
8:24 

(SD – 0:46) 
8:44 

(SD – 0.47) 
Exp. 09  7:38  8:00 

Exp. 14  9:09  9:33 

Exp. 05 

Landing 

> 20 min (0.07)  > 20 min (0.07) 

> 20 min  > 20 min Exp. 09  > 20 min (0.58)  > 20 min (0.58) 

Exp. 14  > 20 min (0.10)  > 20 min (0.10) 

Exp. 05 
Open 

Bedroom 

> 20 min (0.06)  > 20 min (0.06) 

> 20 min  > 20 min Exp. 09  > 20 min (0.13)  > 20 min (0.13) 

Exp. 14  > 20 min (0.07)  > 20 min (0.07) 

Exp. 05 
Closed 

Bedroom 

> 20 min (0.05)  > 20 min (0.05) 

> 20 min  > 20 min Exp. 09  > 20 min (0.07)  > 20 min (0.07) 

Exp. 14  > 20 min (0.21)  > 20 min (0.21) 

Table 52 – Heat FED time to lethality (lounge closed door scenarios) 
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For Experiment 09, this data is given in Figure 102.  This shows the development of the 

fractional effective doses as a function of time.  Whilst the curve for heat within the fire 

compartment increases exponentially, the FED curves for rooms outside of the fire 

compartment only start to develop after 17 min and again these can be compared to the heat 

FED development curves shown in Figure 77 for Experiment 04.  The closed lounge door 

significantly inhibits the flow of heat within the property to the rooms outside of the fire 

compartment. 

 

 
Figure 102 – Experiment 09 heat FED development 
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4.5.8 FED Conclusion 
 
The data gathered during Experiments 05, 09 and 14 shows that fatal exposure to heat is likely 

to occur within the fire compartment at around 30 seconds before fatal exposure to the 

asphyxiant gases.  Outside of the fire compartment the asphyxiant gases present a much 

greater hazard, when compared to heat with fatal exposure to these gases occurring in a 

significantly shorter time. 

 

The closed door between the fire compartment and the remainder of the property does act to 

protect those occupants who are located elsewhere within the building.  Whilst it is recognised 

that there is a delay of approximately 4 min for the smoke detectors to actuate (when compared 

with the lounge fires where the door was open) the escape route remains available for a further 

8½ min after the fire starts.  This results in a net gain of approximately 4½ min in the time 

available for self-evacuation. 

 

It is also observed that the ventilation area is more critical within this group of experiments.  

These fires only have very limited access to the residual air within the remainder of the 

property as a result of the fire compartment door being closed and are almost totally reliant 

on air directly accessed via the external vents.  As a result, the fire development profile where 

the ventilation area is 0.5 m2, is very much ventilation-controlled and the consumption of the 

fuel is retarded by the lack of availability of O2.  The degree of ventilation-control placed 

upon these three experiments is much more noticeable than those discussed within Section 

4.3, where the fire compartment door is held open. 
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Figure 103 and Table 53 show the timeline of events during these experiments with the 

average being taken from the 3 experiments, however the data from Experiment 14 is omitted 

after the point at which it becomes clear that the fire compartment ceiling has been breached.  

This shows that smoke was detected in the hallway at 6:08 after ignition.  Within these 

experiments the sequence of events changes in respect of the fact that tenability within the 

fire compartment is lost prior to the escape route becoming impassable. 

 

Tenability within the lounge is lost at 8:24 after ignition and only 2:16 after the alarm actuates.  

As discussed earlier, the escape route is protected by the closed fire compartment door and 

remains useable for a period of 6:26 after the alarm has actuated.  Tenability on the landing is 

also extended as a result of the protection from the closed fire compartment door and is lost 

at 18:36 after ignition.  Tenability within the open door bedroom occurs some 40 seconds 

later and the closed door bedroom remains tenable for the duration of the experiments. 

 

 
Figure 103 – Lounge fire door closed fire survival timeline 
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Event  Time 

Ignition  0:00 

Alarm Actuation  06:08 

Visibility Lost  12:34 

Lethality (Fire Compartment)  08:24 

Lethality (Landing)  18:36 

Lethality (Open Bedroom)  19:16 

Lethality (Closed Bedroom)  > 20:00 

Table 53 – Lethality event / time analysis (lounge fire door closed scenarios) 
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4.6 Comparison of Experimental Variables 
 
This section establishes if the predetermined variables impacted experimental observations. 

 

4.6.1 Fuel Comparison 
 
A direct comparison of the two fuel types used in Scenarios 1 and 2 shows that the fires which 

involved upholstered furniture are nitrogen containing and produce HCN in contrast to the 

fires which consumed cooking oil, which do not contain nitrogen and do not produce HCN.  

The production of HCN presents a significantly greater threat to the occupants of a building, 

when involved in fire.  The kitchen fires are also restricted by the availability of fuel where 

only 3 kg of oil is burned in Scenario 1 compared with 40-50 kg of timber and polyurethane 

in Scenario 2.  The production of HCN, during Scenario 2 and the quantity of fuel consumed 

are the main factors in support of the fatality rates in bedroom/living/dining room fires being 

13.4 times greater than in kitchen fires, as discussed in Section 2.1.3. 

 

4.6.2 Passive Fire Protection Comparison 
 
Data taken from each of the three experimental groupings is compared for the times to FED 

(in respect of the more relevant asphyxiant gas exposure rather than heat), between the open 

and closed door bedrooms.  This data demonstrates that tenability within the closed door 

bedroom is extended for more than 10 min compared to the open bedroom as a result of the 

protection afforded by a closed door.  This simple passive fire protection measure greatly 

increases a person’s chances of surviving a domestic fire as it significantly increases the 

probability of a successful F&RS intervention.  All F&RSs should continue to deliver this 

protection message, particularly when people are more vulnerable, whilst they are sleeping or 

have restricted mobility for example, or where intervention times are typically longer. 
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In addition, comparisons have been drawn for a number of scenarios to consider the impact 

of having the fire compartment door closed.  The closed fire compartment door may have a 

detrimental effect on the time taken for an automatic detector to actuate, where fitted and 

working.  This delay in raising the alarm is significant as current practice dictates that 

automatic detectors should be located in the hallway and landing areas.  The delay in detection 

between scenarios where the fire compartment door was open and where it was closed is 

typically around 4 min. 

 

However, closing the fire compartment door can also have a number of positive effects.  It 

can help to reduce the rate of fire development and therefore heat and smoke production, 

particularly where there is a limited amount of ventilation to the fire compartment, as 

discussed throughout Section 4.5.  The closed fire compartment door will also restrict the flow 

of heat and smoke into the other rooms within the house. 

 

The joint impact of having a slower growing fire and a barrier to heat and smoke transfer, is 

that there is a net increase in the time that the escape route remains available of an extra 4½ 

min (after alarm actuation) where the fire compartment door is closed.  In addition, the 

duration of tenability within the other compartments in the building is typically increased by 

approximately 10 min and therefore yields a net increase in survivability times of around 6 

min from the fire alarm actuating. 
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4.6.3 Comparison of Smoke Detector Actuation Times 
 
A comparison of the data presented within the different groupings shows that the time taken 

for smoke detectors to actuate is dependent on a number of factors.  It is of significance that 

smoke detectors actuated at almost 6 min prior to ignition during the kitchen fire scenarios, 

as a result of the production of airborne particulate matter during early pyrolysis.  This clearly 

gives the occupants more time to self-evacuate. 

 

It is also of significance that the time to detection is affected by closed doors between the fire 

and the detector.  Figure 104 shows the average time to detection taken from the fires in 

groups 2 and 3.  It shows the delay caused by having a closed fire compartment door, however, 

the net gain as a result of this protection measure is also clearly demonstrated. 

 

 
Figure 104 – Comparison of smoke detector actuation times 
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4.6.4 Comparison of Ventilation Levels 
 
The impact that under-ventilated fires have on the rate of production of the asphyxiant gases 

CO and HCN, has been considered during the analysis of the experiments.  The degree of 

ventilation was varied during experimental groupings 2 and 3 only, where the fire was located 

in the lounge. 

 

In the group 2 experiments it was observed that there was a difference in the rates of 

production of these two gases between the well-ventilated and the under-ventilated 

experiments (see Figure 67 and Figure 68).  The rate of fire development and the CO:CO2 

ratio within all experiments are linked to the amount of ventilation available to the fire.  It 

was observed that the temperature profiles seen within the group 2 experiments did not 

differentiate between those experiments where the ventilation was 0.5 m2 and those where it 

was 2.0 m2 (see Figure 61). Any observed differences were well within the boundaries of 

experimental variability and it is not therefore appropriate to draw any conclusions.  A major 

factor in respect of this appears to be that, with the fire compartment door being open, the fire 

has access to the air that is residual within the rest of the premises and that there is adequate 

oxygen already contained within the building to support combustion during the early stages. 

 

By comparison, with the group 3 experiments there is a more noticeable variation.  With the 

fire compartment door closed, the fire growth rate is much more dependent on the ventilation 

direct from outside into the fire compartment.  Where this varies it can be seen that fire 

development is affected, this is shown in Figure 93 and discussed in Section 4.5.2.  In these 

experiments the fire has no access to the air residual within the property because of the closed 

door. 
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The location of the ventilation openings can also have an impact upon fire development, 

specifically from a number of visual observations made during the experiments.  During 

Experiment 08 it was seen that fire development appeared to be quicker in comparison to 

other similar experiments.  Temperature profile data given in Figure 61 and Figure 62 support 

this observation and a hypothesis for this would be that with a ventilation opening being 

located on the first floor, the entire building acted like a chimney.  The smaller vent on the 

ground floor appeared to act predominantly as an inlet vent with little smoke moving direct 

to the outside.  This enabled the lower level vent to increase the influx of air and to support 

an increased fire growth rate. 

 

4.6.5 Comparison of Duplicate Tests 
 
The experimental design as detailed in Chapter 3, sets aside three separate scenarios as 

duplicates, to test the reproducibility of these scenarios.  Experiments 01 and 02 were 

duplicate tests based on a pan of oil on fire within a kitchen with no further fuel sources being 

involved.  These two experiments were very reproducible although this is not surprising for 

what is essentially a pool fire, where the availability of fuel is strictly controlled by the surface 

area of the pool. 

 

Experiments 03 and 04 were also intended as duplicates.  Figure 105 shows the temperature 

profiles of these two experiments.  Experiment 03 has previously been identified to have a 

slower fire development where the incubation phase was extended by approximately 5 min.  

This provides a further demonstration that these tests can be impacted upon by a number of 

factors. 
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Figure 105 – Lounge open door temperature profiles (lounge at 150 cm) 
 

Experiments 05 and 06 were also intended to be duplicates but Experiment 06 was never 

completed due to time constraints. 

 

What has been observed is that within the three separate groupings, there was a reasonable 

amount of reproducibility.  Within group 2 this is most apparent, probably as a result of this 

group having the highest number of individual experiments completed.  Large-scale 

experiments such as these are both complex and expensive to complete and as a result it is not 

always feasible to conduct a significant enough number of tests to achieve a statistically valid 

data set.  Within the constraints placed upon this project a reasonable agreement and averaged 
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4.6.6 Comparison of Fire Loading 
 
The fire loading within different experiments was increased to establish the impact upon the 

conditions within the property.  With respect to the kitchen fires, when the fire was allowed 

to spread to the nearby kitchen units, this produced a much more hazardous situation.  

However, as a result of the production of airborne particles prior to ignition (and where smoke 

detection is fitted and working) both scenarios should be reasonably survivable as a result of 

the large timeframe for self-evacuation. 

 

With respect to the scenarios involving lounge fires with upholstered furniture, there are two 

main considerations.  The first is that tenability within those rooms which are open to the fire 

compartment (i.e. there is no closed door between the fire and that compartment) is usually 

lost within 10 min of ignition.  It was observed that the onset of flashover could take more 

than 10 min.  Therefore, tenability is lost within all open rooms before much of the additional 

fuel starts to contribute towards heat and smoke production. 

 

The second consideration is that within those compartments which are closed to the fire 

compartment (i.e. protected by a closed door) tenability is extended as a result of the 

protection of the doors.  The fact that additional heat and smoke are being produced as a result 

of the additional fuel loading becomes irrelevant because of the physical barrier which 

minimises the transfer of heat and smoke into these compartments. 

 

As a result, it can be concluded that the additional fire loading in some of the experiments did 

not appear to significantly increase the hazard to the occupants. 
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4.7 Comparison of Tenability Timelines 
 
Figure 106 shows how the timelines for compromised tenability (averaged across the three 

experimental groupings) compare to one another and helps to explain the hazards that arise as 

a result of the different scenarios. 

 

It shows that the alarms actuated prior to ignition (-5:49) during the kitchen fires and that 

there was a 4 minute delay in detection as a result of the lounge door being closed in those 

experiments involving upholstered furniture.  An earlier alarm would increase the likelihood 

of occupants surviving the incident as they will have more time to self-evacuate or wait for 

the F&RS. 

 

It also shows that, whist early detection of the fire is achieved when the fire compartment 

door is open, tenability in terms of visibility through smoke on the escape route only extends 

for approximately 3 min after detection.  By comparison, in those experiments where the fire 

compartment door is closed, tenability through visibility extends some 6½ min past detection. 

 

The resulting net gain in visibility from the fire compartment door being closed would be of 

great assistance in situations where a working smoke alarm is fitted, the alarm is raised with 

the occupant and where the occupant is physically able to self-evacuate. 

 

Figure 106 also shows that, in those experiments where the fire compartment door is closed, 

tenability within the fire compartment is lost before the visibility on the escape route is 

compromised.  By comparison, where the fire compartment door is open, the visibility on the 

escape route is compromised before tenability within the fire compartment is lost. 
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Figure 106 – Comparison of tenability timelines 
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It shows that tenability on the landing is lost at around 7½ min after ignition during the 

kitchen fire scenarios; 9 min after ignition for the lounge fire door open scenarios and 18½ 

min after ignition for the lounge fire door closed scenarios. 

 

It shows that there is roughly a 40-60 second delay in the loss of tenability from the landing 

to the open door bedroom.  It should be remembered that tenability within the closed door 

bedroom remained above 20 min in all but one of the experiments. 

 

Table 54 summarises the information within this section and shows the time duration between 

an alarm activation and another event occurring.  For example, with the lounge fire door 

closed scenarios, tenability on the landing is 12:28 after the alarm actuates.  So it is apparent 

that, where an occupant relies upon a fire alarm, the lounge fire scenarios where the 

compartment door is open present the most hazardous set of conditions. 

 

Grouping 

Tenability Lost 

Visibility Lost 
Fire 

Compartment 
Landing  Open Bedroom 

Kitchen (open)  8:51  10:27  13:20  14:16 

Lounge (open)  2:43  4:31  6:27  7:14 

Lounge (closed)  6:26  2:16  12:28  13:08 

Table 54 – Tenability event / time analysis (lounge fire door closed scenarios) 
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4.8 Comparison of Results with Other Large-Scale Tests 
 
These is a summary of the results from the 3 large-scale experiments discussed in Section 1.8. 

 
1. The effect of a closed door – where two bedrooms are compared one with its door open and 

one with the door closed the difference can be considerable.  Closing a door (typical domestic 

door not a fire door) can considerably reduce the amount of smoke transferred and this can 

increase the tenable duration from less than 7 min with an open door to more than 20 min 

when the door is closed.  (Supported by this study). 

2. Delays in smoke detection with a closed door – where the door of the fire compartment is 

closed, this can lead to an extended time to detection where the detector is located outside of 

that room.  These experiments agree that whilst the time to detection is increased, the amount 

of time available for escape becomes significantly greater and therefore more than 

compensates for the delay in detector response.  (Supported by this study). 

3. Tenability where heat is compared to asphyxiation from CO only – where the occupant 

of a domestic building is located either within the fire compartment or close to it, there is a 

likelihood that incapacitation will result from exposure to either heat or to asphyxiant gas at 

around the same time.  Where the occupant is located more remotely from the fire, the 

likelihood is that incapacitation from exposure to asphyxiant gases will occur however it is 

probable that temperatures will be sufficient to cause incapacitation. (This study suggests that 

the effects of heat are likely to occur before the effect of CO close to the fire). 

4. Tenability where heat is compared to asphyxiation from the combined effects of CO and 

HCN – in experiments where both of the two main toxic gases are considered, a loss of 

consciousness due to smoke inhalation occurs prior to that from heat exposure both within the 

fire compartment and in other locations remote from it.  (This study suggests that the effects 

of heat and asphyxiant gases {combined CO/HCN} occur at approximately the same time). 

5. Other effects occurring prior to incapacitation – it is recognised that both visual 

obscuration and soreness to the eyes and respiratory tract will occur prior to incapacitation as 

a result of exposure to smoke.  Both of these effects are unlikely to cause a loss of 

consciousness to an exposed occupant although it may impact upon their decision to evacuate 

the building or seek refuge.  (No data was gathered to support or dispute this conclusion).
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Chapter 5 - Comparison with F&RS Intervention Times 
 
F&RSs within the UK perform 3 distinct roles.  The Bain Report discusses these as a ‘modern 

approach to F&RS activities' [57], it states that the new emphasis must be on the ‘prevention’ 

of fire rather than the methods of dealing with it and that what is required is a new approach 

to ‘protecting’ people from the incidence of fire.  It also states that a modern, flexible, risk-

based approach to allocating intervention resources should be adopted. 

 
1. Prevention – F&RSs utilise fire crews and other trained personnel to conduct prevention-

based activities.  This includes working with members of the public to raise awareness of the 

dangers of fire and providing advice on simple ways to minimise the risk of accidental fires. 

2. Protection – this activity is two-fold, in the first instance F&RSs work to identify the common 

failings which result in fire deaths and injuries and they lobby to improve the national fire 

safety standards which protect people in both domestic and non-domestic buildings.  

Protection activities are also carried out whilst conducting prevention-based activities and will 

include the provision of smoke detectors and giving advice on what to do in the event of a 

fire. 

3. Intervention – when fire prevention fails, fire crews are mobilised to incidents.  They are 

required to extinguish fire and to make attempts to rescue any individuals who become 

trapped. 
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When there is a fire within a domestic property, the ideal outcome is that the occupants are 

able to self-evacuate prior to the attendance of the F&RS.  Sometimes this is not possible 

either as a result of the occupants becoming trapped by the fire, or that they are unable to self-

evacuate for some other reason.  When this occurs, the F&RS will try to effect a rescue as 

part of an intervention, otherwise the occupants are likely to perish. 

 

As fractional effective doses are time dependent then the ‘time taken to effect a rescue’ can 

be critical to the occupants.  Within this section, appropriate F&RS intervention timelines are 

established and are compared to the tenability timelines presented in Section 4.7. 

 

5.1 Stages of a F&RS Intervention 
 
The stages of an F&RS intervention are rarely discussed when considering occupant survival.  

Sträng identified four distinct stages (dispatch, arrival, investigation and set-up times) 

[91][92].  Further development by the author identifies 8 stages, shown sequentially in Table 

55 and described thereafter.  This assessment is based on the assumption that the property 

contains a working smoke alarm.  Standard deviations are presented (where available). 

 

Time Step 
Group 1 
(mm:ss) 

Group 2 
(mm:ss) 

Group 3 
(mm:ss) 

1. Time to alarm  ‐5:49 (2:25)  2:17 (0:32)  6:08 (1:05) 

2. Occupier recognition  2:00 (‐) 

3. Dial 999 through BT  0:30 (‐) 

4. Call Handling  1:24 (0:44) 

5. Crew Reaction  1:16 (0:37) 

6. Travel  4:03 (2:00) 

7. Safe System  1:25 (‐) 

8. Time to Rescue  3:02 (‐) 

Lower Limit  2:05  12:04  15:22 

Average  7:51  15:57  19:48 

Upper Limit  13:37  19:50  24:14 

Table 55 – F&RS intervention times 
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Table 55 shows the average intervention time for each group and also a lower and upper limit 

based on one standard deviation. 

 
1. Time to alarm –the time between ignition and alarm actuation.  This step is variable and is 

established for each of the experimental groupings.  Standard deviations are provided. 

2. Occupier recognition – time between alarm actuation and the point at which a call for help is 

made.  The rationale for this time step is given in Section 5.2. 

3. Dial 999 / BT exchange – time taken to dial 999, request the fire service at the BT exchange 

and then be put through to local authority fire control.  A time of 30 seconds was established 

by conducting several test calls.  The duration of these were consistently within a few seconds 

of each other and make no significant difference to the overall timeline, therefore standard 

deviations are not included. 

4. Call handling – time taken from the call being passed to fire control to the point where a fire 

appliance is assigned to an incident.  During this time step fire control will establish the nature 

and location of an incident and assign a suitable resource.  The average time taken from 3,404 

ADFs in the West Midlands is 1:24 over the period Apr 14 – Mar 16. 

5. Crew reaction – time between a crew being assigned to an incident and a crew establishing 

that they are mobile to that incident.  This includes the time taken for firefighters to gather at 

the fire appliance and get dressed in their fire kit and is based on the same 3,404 incidents. 

6. Travel – time between a crew mobilising to and arriving at an incident, based on the same 

3,404 ADF incidents. 

7. Safe system – on arrival, the fire crew are required to put safe systems of work in place before 

they enter a building which is on fire.  This figure was established based on a separate study 

which is discussed in Section 5.3. 

8. Rescue – the final stage of an intervention is intended to have a positive effect on the 

occupants e.g. by extinguishing the fire, ventilating a building and rescuing casualties.  This 

data was also established within the study discussed in Section 5.3. 
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5.2 Occupier Recognition Time 
 
This time step is difficult to quantify as it is not directly recorded, it cannot be established 

from experimentation, the ignition time is not usually known and time frames gathered during 

conversation with the occupants after a real incident can be somewhat unreliable.  Q.5.3 of 

the incident recording system does request that the fire officer estimate the time between 

discovery and first call, however this is only an estimation and is not generally established 

with any great accuracy.  The time options for the reporting of this stage are also quite broad. 

 

Fire officer estimations for the time between discovery and first call are gathered by WMFS.  

The data for ADFs (where a working smoke alarm and an occupant were both present) during 

the two year period from Apr 2014 to Mar 2016 are shown in Figure 107 which includes 2,199 

incidents. 

 

 
Figure 107 – Estimated time between discovery and first call 
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Assuming that ‘immediately’ is equivalent to 10 seconds and ‘under 5 min’ is equal to the 

midpoint (2.5 min), then for 91.5% of calls, the average time from discovery to first call is 

1:07.  Further assuming that ‘5–30 min’ is equal to the midpoint i.e. 17.5 min, then for 98.7% 

of calls, the average time between discovery and first call is 2:19.  Based on this analysis it 

seems reasonable to use a figure of 2 min to estimate the time from discovery to first call.  No 

standard deviation is given, as this figure is not developed from quantitative data. 

 

5.3 Safe System and Rescue Time 
 
In support of this project, it was necessary to establish how long it takes for firefighting crews 

to put safe systems of work in place before they enter a building fire and how long it takes to 

search for and rescue casualties. 

 

Safe system activities will be completed both en route to and immediately upon arrival at an 

incident.  These could include activities such as donning appropriate fire kit and breathing 

apparatus, obtaining an extinguishing media and completing a mandatory firefighter entry 

control procedure.  Rescue activities may also take a while due to the conditions faced by 

firefighting crews and the need to search for casualties and firefight as they move through the 

building. 

 

In order to achieve this, a colleague of the author gathered information from observing 20 

WMFS training activities and achievable times for setting up safe systems of work were 

established [93].  The separate training activities involved crews from different stations across 

the West Midlands. 
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5.4 F&RS Intervention (Group 1) 
 
A comparison of the group 1 tenability timeline from Figure 106 and the F&RS intervention 

timeline is given in Figure 108.  The bar chart shows the times when fatal exposure within the 

various compartments occurs and the blue shaded area shows the intervention time window.  

The average intervention time is indicated by a green vertical line.  The earliest feasible 

intervention is likely to take place at around 2 min after ignition with the latest time being 

around 13½ min and the average at 7:51. 

 

5.5 F&RS Intervention (Group 2) 
 
A comparison of the group 2 tenability timeline and the F&RS intervention timeline is given 

in Figure 109.  The earliest feasible intervention is likely to take place at around 12 min after 

ignition with the latest time being around 20 min and the average at 15:57. 

 

5.6 F&RS Intervention (Group 3) 
 
A comparison of the tenability timeline and the F&RS intervention timeline is given in Figure 

110.  The earliest feasible intervention is likely to take place at around 15½ min after ignition 

with the latest time being around 24 min and the average at 19:50. 

 

The window for a fire service intervention occurs at the same time that tenability is lost within 

the different rooms for experimental groupings 1 and 3 and therefore presents an opportunity 

for the F&RS to complete a successful rescue.  However, tenability within group 2 is reached 

well before a fire service intervention and limits the opportunity for rescue, except where the 

occupants are protected by a closed door.  This is analysed further in Section 5.8. 
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Figure 108 – Tenability and intervention timeline (group 1) 
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Figure 109 – Tenability and intervention timeline (group 2) 
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Figure 110 – Tenability and intervention timeline (group 
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5.7 Variations in Intervention Times 
 
It is important to recognise that F&RS intervention times vary significantly across the UK, 

with shorter attendance times in large cities compared with those in more rural locations.  Fire 

and rescue service provisions are based on risk, and there tends to be a greater degree of risk 

from fire in large urban areas.  WMFS is one of 7 metropolitan fire brigades within England 

and this model could be used to assess the effectiveness of an F&RS response within any of 

these areas.  The 7 metropolitan brigades are London, Greater Manchester, Merseyside, South 

Yorkshire, Tyne & Wear, West Midlands and West Yorkshire.  In comparison, the F&RSs 

which operate in more rural areas are less likely to achieve the attendance standards discussed 

within this section, but equally the fire risk in those communities is generally lower. 

 

5.8 Influencing Intervention Times for the Future 
 
Each of the 8 time steps of an F&RS intervention are (to some extent) variable.  Table 56 

considers each time step individually and determines its criticality towards the overall time 

for an intervention, it also shows the percentage contribution of each time step to the total. 

 
Time Step  Activity  Lounge (open)  Lounge (closed) 

1  Time to alarm  2:17  14.3%  6:08  31.0% 

2  Occupier recognition  2:00  12.5%  2:00  10.1% 

3  Dial 999 / BT Exchange  0:30  3.1%  0:30  2.5% 

4  Call handling  1:24  8.8%  1:24  7.1% 

5  Crew reaction  1:16  7.9%  1:16  6.4% 

6  Travel  4:03  25.4%  4:03  20.5% 

7  Safe system  1:25  8.9%  1:25  7.2% 

8  Rescue  3:02  19.0%  3:02  15.3% 

  Total  15:57  100.0%  19:48  100.0% 

  Lower Limit (‐1 S.D.)  12:04    15:22   

  Upper Limit (+1 S.D.)  19:50    24:14   

Table 56 – Influencing intervention times 
 

The time steps in Table 56 have been colour coded in order of significance (see over). 
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Green coded time steps (low significance) 

 2. Occupier recognition – behavioural and very difficult to influence in the event of a fire. 

 3. Dial 999 / BT Exchange – relatively short and not under the control of the F&RS. 

 

Amber coded time steps (some significance) 

 4. Call handling – contributing around 9% of the total time, opportunities to minimise this 

time step should be explored and could include continued staff training and software 

development. 

 5. Crew reaction – contributing around 7% of the total, opportunities to minimise should be 

explored with continued staff training and improved fire station design. 

 7. Safe system – contributing around 8% of the total, opportunities to minimise should be 

explored and could include continued staff training and other innovations. 

 8. Rescue – contributing around 17% of the total, opportunities to minimise should be 

explored and could include continued staff training, procedural development and other 

innovations. 

 

Red coded time steps (critical significance) 

 1. Time to alarm – contributing 15-30% of the total, this is a critical factor in protecting 

domestic occupants.  F&RSs undertake significant and targeted work to protect all properties 

with a working smoke alarm.  This time step could be reduced significantly by more 

widespread use of interlinked smoke detection systems with further protection being afforded 

to high-risk rooms such as bedrooms and living rooms. 

 6. Travel – contributing between 20 and 25% of the total, this is also a critical factor.  This 

time step is largely influenced by the number and type of fire engines and by the number and 

location of fire stations.  Given recent reductions in the funding from central government, 

many F&RSs have taken the decision to reduce the number of fire engines and fire stations 

and this is likely to continue in the future. This is almost certain to increase the average travel 

time to an incident and therefore the total time taken for an intervention, as evidenced in a 

study undertaken by Lancaster University [3].  Consequently, there will be an increased risk 

when fire occurs and occupants become trapped or are otherwise unable to self-evacuate. 
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5.9 Dependence of Intervention Times on Life Safety 
 
Based on analysis, it is possible to assess the likelihood that a person, in need of rescue, has 

of surviving in each scenario.  Where the tenability limits are exceeded and this occurs prior 

to an F&RS intervention then the likelihood of survival is low; where tenability limits are 

reached during an intervention, the likelihood of survival is moderate and where an 

intervention occurs prior to tenability limits being reached, the likelihood of survival is high.  

The outcomes of this analysis are presented in Table 57. 

 
Description Group 1 Group 2 Group 3 

Occupant Location Kitchen Fire 
(Door Open) 

Lounge Fire 
(Door Open) 

Lounge Fire 
(Door Closed) 

Fire Compartment Moderate Low Low 

Landing Moderate Low Moderate 

Open Bedroom Moderate Low Moderate 

Closed Bedroom High High High 

Table 57 – Likelihood of a successful F&RS intervention 
 

It shows that the likelihood of survival is only low when the fire is located within the lounge 

and where the occupant is not protected by a closed door.  In all other situations there is a 

possibility that the F&RS can successfully effect an occupant rescue. 

 
Description Group 1 Group 2 Group 3 

Occupant Location Kitchen Fire 
(Door Open) 

Lounge Fire 
(Door Open) 

Lounge Fire 
(Door Closed) 

Fire Compartment Moderate Low Low 

Landing Moderate Low Moderate 

Open Bedroom Moderate Low Moderate 

Closed Bedroom High Moderate High 

Table 58 – Likelihood of a successful F&RS intervention (+2 min) 
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Table 58 shows the likely outcome where the average time of an intervention is increased by 

2 min (a possible consequence of austerity measures).  An increase of 2 min will not impact 

upon those situations where the likelihood of survival is low; however, where the likelihood 

of survival is moderate a 2 min increase could make a significant difference as the dose 

increases constantly.  Notably, one of the scenarios is re-categorised from high to moderate. 

 

The importance of a prompt F&RS intervention can be seen, when the FED curves (from 

Chapter 4) show the transition from ‘suffering minor smoke inhalation’ to having received a 

‘fatal dose’ can occur in less than two minutes.  Figure 111 shows this, with the asphyxiant 

gas FED curves observed during Experiment 09 (Figure 101) with the F&RS intervention 

time window overlaid for comparison (shaded blue). 

 

 
Figure 111 – Experiment 09 FED compared to intervention 
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Chapter 6 - Conclusions 
 

6.1 Statistics Conclusions 
 
An analysis of fire statistics has been undertaken to better understand the factors which 

might lead to fire deaths and injuries.  In GB, over the three year period from April 2010 

to March 2014, 77% of all fatalities and 80% of all injuries from fire occurred in dwellings, 

with 65% of fatalities and 70% of injuries from fire occurring as a result of ‘accidental 

dwelling fires’.  Over the same period 46% of fatalities occurred in ADFs where the fire 

started within the bedroom, living or dining rooms; and some 42% of fire injuries occurred 

in ADFs where the fire started within the kitchen. 

 

Whilst it has been reported that 88% of all households in GB had a working smoke alarm 

in 2012/13 [6], in those fires where injuries occurred this figure drops to 43% and for 

fatalities it is only 24%.  This demonstrates the additional risk to people where a fire occurs 

in the absence of a working smoke alarm and also suggests that those members of the 

community who are more likely to have a fire are less likely to have a working smoke 

alarm.  It is recognised that those who act to mitigate the effects of fire present a different 

risk profile to those who are less active [94]. 

 

When fire occurs in a domestic property, the occupants are at risk from heat and asphyxiant 

gases.  Asphyxiant gases present the greater hazard causing 50-70% of all ADF fatalities, 

whereas heat causes 30-50% of these.  Some 70% of all fire fatalities occur where the item 

mainly responsible for fire development is furniture, furnishings, clothing or textiles; and 

95% of fatalities result from the smoke from these fuels in bedrooms or living rooms fires. 
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When fire fatalities occur, the main source of ignition is ‘smoking related’ (40%) and for 

injuries it is ‘cooking appliances’ (52%).  There is also a tendency for fire injuries to occur 

where the fire size is less than 5 m2, with fatalities being likely where the fire is greater 

than this size. 

 

The statistical analysis demonstrates that the most hazardous fire situation, with respect to 

the number of occupant fatalities, is a fire in a bedroom or living room which involves 

furniture, furnishings, clothing or textiles.  Fires resulting in injuries are most likely to 

occur as a result of a kitchen fire involving foodstuffs.  The statistical analysis has been 

used to inform the experimental activities and this constitutes a new approach in this field. 

 

6.2 Experimental Conclusions 
 
When a significant fire occurs within an occupied dwelling there are 3 realistic outcomes 

for the occupants: - 

 
1. Self-Evacuation – The occupant becomes aware of the fire, has adequate time (and/or 

protection) to evacuate and is physically able to do so (potential for non-fatal injury). 

2. Rescue – The occupant is unable to self-evacuate and is successfully rescued from the 

property (most likely by F&RS personnel) sustaining a non-fatal dose of heat or asphyxiant 

gases (potential for non-fatal injury). 

3. Fatal Exposure – The occupant is not able to self-evacuate and receives a fatal dose of heat 

or asphyxiant gases prior to or whilst being rescued (fatal injury occurs). 

 

A series of experiments have been conducted to establish the likely outcome for a number 

of scenarios which have been identified as ‘those most likely to cause injury or fatality for 

the occupants’.  These experiments and the subsequent analysis lead to the following 

conclusions.  
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When a fire starts as a result of the ignition of overheated cooking oil in a kitchen and an 

alarm is fitted and working, there is a time window of more than 8¾ min to allow for self-

evacuation before the escape route becomes impassable.  During these fires a self-

evacuation is likely to occur, where the occupants are physically able to do so and they are 

aware of the fire. 

 

When occupants are unable to self-evacuate from a kitchen fire but the emergency services 

have been notified, it is highly likely that a rescue will occur prior to the occupant receiving 

a fatal dose of heat or asphyxiant gases.  Injury from exposure to smoke is likely. 

 

When a fire involves upholstered furniture in a living room the hazard to occupants is 

considerably greater.  This results from an increased gas output (CO2, CO and HCN) as a 

result of the higher mass burning rate of a sofa compared to cooking oil, the production of 

the additional asphyxiant gas HCN and also as a result of the reduced time between fire 

detection and the onset of compromised tenability.  With this fire type, fatalities within the 

fire compartment are likely to result from exposure to heat; outside of the fire compartment 

fatalities are almost exclusively caused by exposure to the asphyxiant gases. 

 

When the lounge door is open and a fire occurs within the lounge, the time window for 

self-evacuation is approximately 2¾ min before the escape route becomes impassable.  The 

significant reduction in the time available for escape and the larger hazard created during 

lounge fires are key factors leading to the increased mortality rates that are discussed in 

Section 2.1.3.  When the lounge door is closed, the time window for self-evacuation is 

much increased to around 6½ min before the escape route becomes impassable. 
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Experimental data show that the window for self-evacuation is much greater when the fire 

compartment door is closed (and the occupant resides outside the fire compartment).  If a 

lounge is on fire and the lounge door is open the likelihood is that a fatal exposure to the 

asphyxiant gases will occur well before an F&RS intervention, unless there is an immediate 

self-evacuation.  The only chances of preventing this outcome are prompt self-evacuation 

or for the occupant to protect themselves behind a closed door and wait to be rescued by 

the fire service. 

 

When the lounge door is closed and the fire is contained, the time available for self-

evacuation is more than doubled, a rescue is likely to take place prior to fatal exposure and 

those occupants who are protected by another closed door may survive for an extended 

period well after a typical F&RS intervention. 

 

The experimental outcomes of this study compare well with similar studies which have 

previously been conducted.  The value of the occupant being in a compartment with a 

closed door between them and the fire is clearly observed in this study as it is in others.  

Whilst these studies show that there is a delay in detection times where the fire 

compartment door is closed and the detector is located outside of the fire compartment, this 

delay is more than compensated for by the increase in the time available for self-evacuation.  

Several studies, including this one, also show that fatalities within the fire compartment 

can occur as a result of either heat or asphyxiant gases but in locations outside of the fire 

compartment, fatal exposure occurs almost exclusively from the inhalation of CO, HCN 

and CO2. 
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Another conclusion of these experiments is that the residual air (in other rooms outside the 

fire compartment) offsets the effect of having an increased amount of ventilation, in fires 

where the fire compartment door is open and this air can be readily accessed by the fire.  

Where the fire compartment door is closed and the residual air is inaccessible, the amount 

of ventilation within the fire compartment becomes more critical. When ventilation is 

significantly reduced a fire will soon become vitiated and is likely to self-extinguish in a 

reduced O2 atmosphere.  The location of ventilation openings can also have a significant 

impact on fire growth and the production and circulation rates of heat and asphyxiant gases.  

The most hazardous example of this was when a vent (for outlet) was located on the first 

floor and a vent (for inlet) was located within the ground floor fire compartment. 

 

In the sofa experiments, the two asphyxiant gases (CO and HCN) have an additive effect 

and contribute towards the occupants receiving a fatal dose.  Based on the observed 

concentrations of these gases it was seen that HCN was the greatest contributor towards 

fatal exposure amounting to 60-75% compared with 25-40% coming from CO.  It was 

observed that the ratio between the concentrations of asphyxiant gases CO and HCN 

seemed to change as the smoke plume moves away from the fire, possibly as a result of 

oxidation of CO to CO2. 

 

The approach taken to establish the HCN concentrations and to suggest that the CO:HCN 

ratio can change within the smoke plume also constitutes new work in this field.  This is 

also the case for the comparison of the relative contribution of the individual asphyxiant 

gases to the total dose. 
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6.3 Conclusions on Intervention Dependence 
 
In the event of an ADF, where the occupants are unable to self-evacuate, their only real 

chance of survival is for them to be rescued and the likelihood is that, during a severe fire, 

a rescue can only be performed by an attending fire crew. 

 

FED and fatal exposure to heat or asphyxiant gases are dose (and therefore) time dependent.  

Consequently, unless fatal exposure occurs either well before or well after a typical F&RS 

intervention, then clearly intervention times will have a significant impact on the number 

of fire deaths and the seriousness of any fire injuries in the UK.  Increases to intervention 

times will result in an increase in the number of fatalities and the seriousness of fire related 

injuries, if everything else remains equal. 

 

A standard approach for assessing the effects of exposure to heat and asphyxiant gases has 

been established (ISO 13571) and has been used to develop a tenability timeline in a 

number of other studies.  There is no evidence to suggest that a complete timeline for a fire 

service intervention has previously been established, nor is there any evidence that a 

comparison between occupant tenability and fire service intervention has been conducted. 

 

This approach constitutes new work in the field and considers exposure in the context of 

assessing whether an occupant is likely to be alive at the point where they are rescued by 

the fire service.  At this point, fire and/or ambulance crews will make attempts to overcome 

the effects of heat and asphyxiant gas exposure, with the aim of keeping the victim alive. 
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6.4 Further Work 
 
In order to build upon this research study the author suggests that a number of activities 

should be undertaken. 

 

Information gleaned from previous incidents helps to develop an understanding of the 

critical factors which lead to fatal and non-fatal injuries.  Historical data can be used to 

develop strategies to reduce the number of casualties, however good data is not always 

readily available.  A national database of information relating to fire deaths and injuries 

would support F&RSs when looking at intervention resourcing.  Most importantly, this 

should be made available to appropriate persons within F&RSs to support decision making 

for risk-based intervention resourcing.  At present, this type of analysis is conducted 

independently within F&RSs and as a result the statistical validity of the data is 

questionable. There would be value in establishing a national database, similar to the way 

in which the LIFEBID project is aimed at gathering data on human behaviour [95]. 

 

Experimental data provides a real insight to the hazards that are present during ADFs.  

Whilst it is costly and not always simple to conduct such experimental activities, more data 

gathering of this kind will support future understanding and the development of evidence-

based decision making.  In support of this there would be great value in developing 

continuous monitoring of HCN concentrations during experimentation. 

 

A less expensive way of obtaining such data could be via the use of computational fluid 

dynamics (CFD) and efforts should be made to use any experimentally gathered data to 

calibrate such models to improve their realism. 
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This study also identifies the impact that ventilation conditions can have on fire 

development.  Further understanding of this would support both the advice given to 

members of the public and could also inform firefighting tactics such that the positive 

impact of an intervention could potentially be achieved earlier. 
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Chapter 7 - Recommendations 
 

On the basis of the conclusions made within this study, the following recommendations are 

made for limiting/reducing the number of fire deaths and injuries in the UK.  This approach 

covers prevention, protection and intervention activities to achieve this objective. 

 

This study shows that having a working smoke alarm within a dwelling is imperative for 

alerting occupants to the fire hazard and for giving them the greatest opportunity to act 

prior to the arrival of the F&RS.  In addition, having a closed door between the occupant 

and the fire is likely to delay the onset of fatal exposure to asphyxiant gases by around 10 

min.  Having this benefit greatly increases the likelihood that the F&RS can successfully 

rescue trapped occupants and avert a fatal exposure. 

 

Therefore, F&RS personnel should continue to lobby for a change to guidance, to extend 

the coverage of smoke detection/alarm into high risk rooms (living and bedrooms) and to 

ensure that detectors are interlinked.  Protection activities should also be undertaken to 

continue to promote the benefits of closed doors.  These measures are of particular 

importance to the more vulnerable members of our communities who are more likely to be 

affected by fire. 

 

F&RSs should aim to maintain or even improve their intervention times, where possible, 

and should continue to give careful consideration towards resourcing their intervention 

provision and ensuring that training is given to firefighters and fire control operators who 

impact upon intervention times. 
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In light of the funding cuts within all public sector services, maintaining rapid intervention 

times is a real challenge for F&RSs and in many cases the current standards are being 

lowered as attendance times continue to increase. 

 

Where increased intervention times are unavoidable, greater investment should be made in 

prevention and protection activities, which can offset the resultant risk.  Managing budgets 

to successfully provide appropriate services is a very fine balance and one which should 

always be conducted on the basis of risk. 

 

Section 5.8 discusses the options for ensuring that intervention times are minimised.  There 

are opportunities to reduce the time taken to complete almost all of the 8 stages of an 

intervention, not all of which are costly and require additional resourcing.  In general, 

reductions can be made through staff training, software development and improved 

operational procedures.  These activities will deliver benefits but it is important to recognise 

that the two most effective ways of minimising intervention times and increasing the 

likelihood of survivability are to achieve early detection of fire and to ensure that crew 

travel times are minimised. 

 

More widespread use of smoke detection and lobbying for national guidance to achieve 

this would help to reduce intervention times and also give people a greater chance of 

surviving an ADF.  Measures should also be taken to reduce crew travel times by ensuring 

that the intervention function is properly resourced and by the use of local knowledge and 

a risk-based approach to provide the best coverage of this resource across each 

geographical area. 
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In the West Midlands, the average crew travel time to all ADF incidents (over the last two 

years) was 4 min and 3 seconds.  The West Midlands is a largely urban area and like other 

conurbations, fire stations are reasonably well distributed and resourced.  In more sparsely 

populated areas, fire stations are located with less frequency and can have a reduced 

resource, therefore the F&RSs operating in predominantly rural areas have significantly 

greater crew travel times. 

 

However, the underlying risk of fire deaths in rural areas is generally much lower than in 

large towns and cities, resulting from a reduced frequency of fire, and therefore a risk-based 

approach is taken.  In order to reduce the number of fire deaths and limit the extent of fire 

injuries, F&RSs should identify their ‘at risk’ areas and ensure that intervention times to 

these are minimised. 
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Chapter 8 - Limitations 
 

In order to complete this study, it has been necessary to make a number of assumptions and 

the reader should also recognise that there are some limitations.  These are both discussed 

in the context of the experimental data gathering and in establishing intervention timelines.  

All assumptions are made on the basis of information that has been gathered during the 

completion of this project and every effort has been made to ensure that they are as accurate 

and as appropriate as possible. 

 

The following assumptions are made in respect of the experimental data gathering: - 

 
 Exposure to heat and asphyxiant gases are considered for compromised tenability only, 

with sensory irritation and smoke obscuration being considered to have minor effects 

 CO and HCN are the only asphyxiant gases considered with the production rate of HCN 

given on the basis of an equivalence to CO 

 Equations used to calculate the FED end points have a level of uncertainty of up to 35% 

 Exposure to heat and smoke occurs for an adult in a standing position 

 People will choose not to escape through smoke which renders the visibility below 3 m 

 There are wide variations in human tolerances to the effects of heat and smoke 

 The item mainly responsible for the production of smoke in the early stages of fire 

development is the item first ignited 

 Either an occupant of the property or a passer-by respond promptly to the fire alarm by 

contacting the fire service to report a fire 

 A limited number of fire tests were completed and varaitaions were observed between 

identical experiments 

 
The following assumptions are made in respect of establishing intervention timelines: - 

 
 The property contains a working smoke alarm 

 Occupier recognition times for fire alarms are established from fire statistics 

  



R.Walker PhD Thesis  8 – Limitations 

 

 
282 

Human susceptibility to the effects of the heat and smoke produced by a fire can be quite 

varied and it has been necessary to make some assumptions during data analysis. On this 

basis, it is recognised that it is a limitation of this project that it is not able to accurately 

determine the exact point at which any individual would succumb to their effects.  Instead, 

this study gives a very good indication of the timeframe over which people can survive 

these effects and compares this to a realistic point at which a fire service intervention would 

take place. 

 

Whilst it has been necessary to make a number of assumptions in order to conduct this 

study, the international standard ISO 13571 accepts that this is required to make 

calculations around the point at which compromised tenability occurs. 

 

On the basis that these two timelines overlap, in many circumstances, it seems reasonable 

to suggest that human survivability can be effected by prompt firefighter activities. 
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 Appendices 
 

 Appendix A – Example of a Fire Data Report 
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 Appendix B – Large-scale Test House Storey Layout 
 

 
Figure A1 – NRC Canada study basement layout 
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Appendix B-2 

 

 
Figure A2 – NRC Canada study ground floor layout 
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Appendix B-3 

 

 
Figure A3 – NRC Canada study first floor layout 
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Appendix C-1 

 Appendix C – O2, CO2 and CO Conc. (NRC Canada) 
 

 
Figure A4 – Concentrations of O2, CO2 and CO in the NRC Canada study 
 

 



R.Walker PhD Thesis  Appendices 

 

 
Appendix D-1 

 Appendix D – Examples of Gas Calibration Curves 
 

 
Figure A5 – CO2 calibration response to 4.0% carbon dioxide 
 
 

 
Figure A6 – CO calibration response to 0.6% carbon monoxide 
 
 

 
Figure A7 – O2 calibration response to 0.0% oxygen 
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Appendix E-1 

 Appendix E – Individual HCN & CO Gas Concentrations 
 

 
Figure A8 – Experiment 03 individual gas concentrations 
 

 

 
Figure A9 – Experiment 04 individual gas concentrations 
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Appendix E-2 

 

 
Figure A10 – Experiment 07 individual gas concentrations 
 

 

 
Figure A11 – Experiment 09 individual gas concentrations 
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Appendix E-3 

 

 
Figure A12 – Experiment 10 individual gas concentrations 
 

 

 
Figure A13 – Experiment 12 individual gas concentrations 
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